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Content 
MARS deliverable 7.2 contains two parts: "D7.2-1: Scenario Analysis Tool (SAT)"�and  
"D.7.2-2: Bayesian Belief Networks".�

 

Summary 

D7.2-1:	Scenario	Analysis	Tool	(SAT)��
Report	on	data,	scientific	methods	and	tool	implementation�

The reduction of some dominating stressors in many surface waters of Europe over the last 
decades revealed the impact of multiple, presumably minor, but jointly acting stressors. The 
MARS scenario analysis tool (SAT) addresses the type of interactions between selected main 
stressors and their current and future impact on aquatic ecosystems at the European scale. The 
resolution of model results is limited to the FEC level (Functional Elementary Catchments, with 
a mean spatial resolution of 58 km2), but the European wide application opens long gradients 
and increases the number of relevant stressors, thus potentially allowing to identify stressor-
response relationships which are often concealed at smaller scales.  

The MARS Scenario Analysis Tool (SAT) is an online tool to visualize and analyse multi-
stressor conditions in European rivers. With 6.13 Mio. km2, the model extent covers EU-27 
countries, EFTA states and hydrological connected areas (e.g. of Ukraine/Danube or 
Russia/Baltic Sea). The tool operates at the level of 104,300 hydrological sub-catchments, 
resembling spatial units similar to the ‘water bodies’ delineated by the European countries for 
the surface water management according to the WFD. The SAT provides a harmonized 
European-wide assessment, comparing geo-climatic regions under different anthropogenic 
stress, with an emphasis on aggregation levels larger than 1,000 km2 and mean conditions over a 
ten year period (due to the underlying data and model features). It also offers a detailed 
overview of stressor conditions and potential impact on the ecological status across Europe. The 
tool predicts the effect of selected mitigation measures and targets users working on EU 
legislation, river basin managers, and scientists interested in multi-stressor conditions in a broad 
context. 
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D7.2-2: Bayesian Belief Networks: Linking abiotic and biotic data  

In this deliverable, the predictive use of Bayesian Belief Networks (BBNs) is presented for 
several case studies for rivers and lakes in Europe. The construction of this BBNs is based on 
the results of MARS WP 4, in which causal relationships are constructed according to the 
DPSIR- approach, ensuring causal relationships between causes for deterioration, pressures, 
state variables and biota. In WP4, these relationships were subsequently statistically tested with 
large). The aim of Deliverable 7.2-2 was to combine abiotic and biotic models for river basin 
management planning. In this work package, BBNs have been used for the coupling of these 
models. 

In this report we have developed predictive BBN models for five case studies catchments across 
Europe to explore the effects of future scenarios on biological responses and ecological status of 
water bodies. The case studies cover many dimensions of the MARS project, such as:  

• Three regions of Europe (North, Central, South), with case studies from Finland 
(Lepsamänjoki), Denmark (Odense), The Netherlands (Regge and Dinkel), Portugal 
(Sorraia), and Norway (Vansjø); � 

• The two water categories: rivers and lakes; � 

• The three story lines: Techno, Fragmented and Consensus world that have been used in 
�MARS work package 4.2; � 

• Various stressor types: Total P, Total N, hydrology, hydromorphological 
alterations,�temperature, etcetera;. � 

• Biological indicators: chlorophyll a in rivers and lakes, cyanobacteria in lakes, 
�macrophytes, macroinvertebrates, fish, and total ecological status of the water body.�

�

For all case studies, the BBN method enabled the coupling of abiotic and biotic models, and 
facilitated predictions of biological responses under the different future storylines. Therefore, 
BBNs had a clear additional value compared to the abiotic process-based catchment models 
(MARS work package 4). Below, the main results are presented for the case studies. 
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1. GENERAL CONCEPT OF THE SCENARIO ANALYSIS TOOL 

Lead: Markus Venohr, Vanessa Bremerich, Judith Mahnkopf 

Introduction 

The reduction of some dominating stressors in many surface waters of Europe over the last decades 

revealed the impact of multiple, presumably minor, but jointly acting stressors. The MARS scenario 

analysis tool (SAT) addresses the type of interactions between selected main stressors and their current 

and future impact on aquatic ecosystems at the European scale. The resolution of model results is limited 

to the FEC level (Functional Elementary Catchments, with a mean spatial resolution of 58 km²), but the 

European wide application opens long gradients and increases the number of relevant stressors, thus 

potentially allowing to identify stressor-response relationships which are often concealed at smaller 

scales. 

Scope of the SAT 

The MARS Scenario Analysis Tool (SAT) is an online tool to visualize and analyse multi-stressor conditions 

in European rivers. With 6.13 Mio. km², the model extent covers EU-27 countries, EFTA states and 

hydrological connected areas (e.g. of Ukraine/Danube or Russia/Baltic Sea). The tool operates at the level 

of 104,300 hydrological sub-catchments, resembling spatial units similar to the ‘water bodies’ delineated 

by the European countries for the surface water management according to the WFD. The SAT provides a 

harmonized European-wide assessment, comparing geo-climatic regions under different anthropogenic 

stress, with an emphasis on aggregation levels larger than 1,000 km² and mean conditions over a ten year 

period (due to the underlying data and model features). It also offers a detailed overview of stressor 

conditions and potential impact on the ecological status across Europe. The tool predicts the effect of 

selected mitigation measures and targets users working on EU legislation, river basin managers, and 

scientists interested in multi-stressor conditions in a broad context. 

Principle approach 

In agreement to the overall concept of the MARS project we followed the Driver, Pressure, State, Impact, 

and Response (DPSIR) concept as the central approach for the SAT. However, the DPSIR approach had to 

be simplified as a consistent driver, pressure, and state cascade could not be derived on a European scale 

and was substituted by the collective term “stressor indicators” (Figure 1). Further, the impact 

assessment on biodiversity measures could only be done indirectly. Instead, we used the ecological state 
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reported by the European countries for the second assessment of the EU-WFD (Table 15). Based on the 

results in Chapter 3.2, we developed a Bayesian Belief Network to estimate the probability to reach a 

good ecological status under a specific combination of active stressor indicators. 

 

Figure 1: Principle concept of a simplified DPSIR approach used for the scenario analysis tool. 

 

The backbone of the SAT is a combination of the models PCR-GlobWB (Chapter 2.1) and MONERIS 

(Chapter 2.2) and is linked with the MARS geo-database (Chapter 3.2). PCR-GlobWB provides information 

on daily water balances for near-natural (i.e. no reservoirs, no water abstraction or addition) current and 

future conditions. These data are used to analyse hydrological alterations (Chapter 3.1), and as input data 

for MONERIS which in turn quantifies nitrogen and phosphorus emissions to surface waters, in-stream 

retention, and resulting loads and concentrations.  

Results of both models, together with an additional extended data collection on various catchment 

parameters and a complete data set of the ecological status reported by the EU member states feed into 

the MARS geo-database. The outputs links climate, water availability, nutrient fluxes and management 

options by quantifying and evaluating multi-stressor conditions and the aquatic response.  

Machine learning approaches (Chapter 3.2) have been used to identify major stressor indicators with the 

strongest power to explain the ecological state reported for the 2nd assessment of the EU-WFD. Six 

dominant stressor indicators were identified and thresholds, i.e. tipping points describing the impact of 

a stressor indicator on the reported ecological state, were derived using regression tree analysis. A 

stressor is considered active if the threshold is exceeded, and inactive if the value remains below the 

threshold. As thresholds for active stressors vary considerably between different river types, the analysis 

was conducted for different broad river types (BRT) (ETC/ICM, 2015). The stressor indicators and derived 

thresholds are used in Bayesian Belief Networks to derive probabilities for a FEC to reach a good or high 
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ecological status. This allowed estimating probabilities to reach a good ecological status not only in 

regions outside the EU, considered in this modelling task, but also under future conditions.  

All data have been collated and models been applied for the period 2001-2010. This period was used to 

conduct the statistical analysis, identify stressor indicators and relevant thresholds and finally to train the 

Bayesian belief network for estimating the probability to reach a good ecological status. All analyses were 

conducted on FEC level. 

Considered scenarios and mitigation measures 

In addition to the current state conditions we derived consistent data sets for two future periods (2026-

2035 and 2056-2065, Figure 2) for two of the three story lines 1) Techno world and 2) Consensus world 

(Figure 2, Table 18). The MARS storylines are described in detail in “Report on the MARS scenarios of 

future changes in drivers and pressures with respect to Europe’s water resources” (MARS Deliverable 2.1).  

 

Figure 2: Conceptual model of the data flow to assess the impacts of multiple stressors on a European scale. 

 

MARS Storyline 1 “Techno World” is based on the representative concentration pathway RCP 4.5 

(moderate change) in combination with the Shared Socioeconomic Pathways SSP2. MARS Storyline 2 

“Consensus World” is based on RCP 8.5 (largest changes) in combination with the Shared Socioeconomic 

Pathways SSP5.  

Within these scenario frameworks we modelled and considered changes in climatic conditions (e.g. 

precipitation, air temperature), runoff, water temperature, construction of new reservoirs, land use, 

population, and collection and treatment rates. The data bases, assumptions, back ground and changes 
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are described in more detail throughout the respective Chapters 2.1, 2.2, 3.1 and 4. Additionally, 

mitigation measures (e.g. N surplus reduction, improved waste water collection and treatment, see 

Figure 2 and Chapter 2.2) to reduce nutrient emissions to and concentrations in surface waters were 

derived and applied in combination with the scenario frameworks. The type and extent of measures 

selected on basis of feasibility, rather than from a reduction need to improve the ecological state. This is 

indicated in Figure 1 by a missing arrow between status and response. Nevertheless, the effect of these 

measures on the nutrient concentrations and subsequently on the probability to reach a good ecological 

status was quantified and assessed. Changing stressor indicator values modelled for scenario conditions 

are translated by the trained Bayesian Belief Network to future probabilities to reach a good or high 

ecological status. 
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2. CONSIDERED INPUT DATA AND MODELS  

2.1  PCR-GLOBWB 
Lead: Frederiek Sperna Weiland, Marta Faneca Sànchez 

Input data 

Historical meteorological data  

Global daily fields of precipitation and temperature were collected from the ERA-40 reanalysis dataset. 

The ERA-40 dataset is obtained with a numerical weather prediction system that includes assimilation of 

meteorological observations. The prediction system has a horizontal resolution of ca. 125 km and a 

vertical resolution of 60 levels (Uppala et al., 2005). The ERA-40 datasets slightly overestimates 

precipitation globally, but underestimates precipitation in the Danube basin (Troccoli and Kalberg, 2004; 

Sperna Weiland et al., 2010). Inter-annual variability is relatively high because the observational data, 

especially satellite data, included in the system vary over time (Hagemann et al., 2005). The ERA-40 

dataset is available for the period 1958-2001 

For the period 1979-2010 the ERA-Interim dataset (Dee and Uppala, 2009) is used. This dataset 

supersedes the ERA-40 reanalysis, and includes several improvements to the numerical weather 

prediction system. The horizontal resolution has been increased from T159 to T255, the model physics 

have been improved, radiance information is used for bias-correction and better data sources are utilized 

for wave height, radiance, and ozone profiles. Nevertheless, a strong correlation exists between the ERA-

40 and ERA-Interim reanalysis datasets. Not only is the ERA-Interim system an evolution of the existing 

ERA-40 system, up to 2001 the boundary forcing of the ERA-Interim system has been taken from the ERA-

40 system. For the present analysis the ERA-Interim time-series of precipitation and have been extracted 

from the ERA-Interim runs. 

The monthly amounts of precipitation and monthly average temperature have been retrieved from the 

monthly CRU TS 3.21 dataset (Harris et al., 2014). The CRU data is based on station data that is 

interpolated as a function of longitude, latitude and elevation above sea level using the thin-plate spline 

method. The monthly data have been downscaled to a daily time-step using the ERA-40 and for the later 

period the ERA-Interim re-analysis dataset. The final data have been corrected for snow-undercatch as 

suggested by Fiedler and Dӧll (2007). 

The resulting daily grids have been disaggregated to the PCR-GLOBWB model resolution of 0.08◦ (∼ 10 

km × 10 km at the equator) using nearest neighbour interpolation. 
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Climate scenarios and data 

Future precipitation and temperature datasets have been taken from the datasets belonging to the 5 th 

assessment report of the Intergovernmental Panel on Climate Change (IPCC; IPCC, 2014).  Focus is on a 

short-term (2026-2035) and mid-term (2056-2065) future time-horizon. The precipitation and 

temperature projections are based on representative concentration pathways (RCPs) that belong to pre-

defined emission scenarios (Van Vuuren et al. 2013). There are 4 RCPs available. From modest to extreme: 

• RCP 2.6: In this pathway the radiative forcing peaks around 2050 after which there is a modest 

decline towards 2100 due to a declining use of oil and an overall decrease in energy use;  

• RCP 4.5: In this pathway the radiative forcing stabilizes before 2100 due to the introduction of 

technologies and strategies that reduce greenhouse gas emissions;  

• RCP 6.0: Here a stabilization, due to the introduction of technologies for greenhouse gas 

emissions, is reached after 2100;  

• RCP 8.5: In this pathway there is a continuously increasing radiative forcing. 

For this project RCP4.5 (moderate change) and RCP8.5 (largest changes) were used. 

For the calculation of future changes we have used datasets from global climate models (GCMs) that 

were part of the international inter-sectoral impact model inter-comparison project (ISI-MIP). The ISI-

MIP project developed future projections that were later used as input for the IPCC 5th assessment 

report. The ISI-MIP data portal can be found at: https://esg.pik-potsdam.de/search/isimip-ft/.  

Within the ISI-MIP project GCM datasets were corrected using the EU-WATCH dataset (Weedon et al., 

2011). This dataset is constructed from the ERA-40 re-analysis dataset (ECMWF; Uppala et al., 2005) 

corrected with the CRU dataset (Mitchell and Jones, 2005).  

Running a scenario throughout the full modelling chain described in this project requires quite some 

calculation time and therefore we have restricted ourselves to the use of one single GCM, namely GFDL-

ESM2M (developed by the Geophysical Fluid Dynamics Laboratory for NOAA; Dunne et al., 2013). 

For the current situation, PCRGLOBWB was forced with a combination of the CRU TS2.1 and ERA-40 / 

ERA-Interim datasets (CRU-ERA). This is a different dataset than the one used by ISIMIP for the historical 

and time-period and the bias-correction of the GCM datasets. However, as PCRGLOBWB has been 

calibrated for the CRU-ERA dataset, we used this one for the current situation. Therefore monthly mean 

changes derived from the ISIMIP datasets have been applied to the historical CRU-ERA datasets to 

construct future precipitation, temperature and evaporation time-series. 

 

https://esg.pik-potsdam.de/search/isimip-ft/
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Socio-economic scenarios 

Future socio-economic changes are described by the Shared Socioeconomic Pathways (SSPs). The SSP 

scenarios serve as a tool for integrated analysis of future climate impacts, vulnerability, adaptation and 

mitigation. There are 5 SSP scenarios, which all differ in challenges on adaptation and mitigation. Each 

SSP is a narrative of possible future socio-economic developments. In this report we consider SSP2 (in 

combination with RCP4.5) and SSP5 (in combination with RCP8.5).  

 

Figure 3: The “challenges space” to be spanned by SSPs (source: O’Neill et al., 2013; based on Kriegler et al. 2012, Fig. 3), divided 
into five “domains” with one SSP located within each domain, represented by a star 

In SSP5 the challenges for mitigation are high due to a lack of climate policy and high emissions whereas 

at the same time there are factors that reduce the mitigative capacity of the society, such as rapid 

population increases, large heterogeneity between different groups within the society, lack of political 

will or limited financial resources (O’Neill et al., 2013). In SSP2 both the mitigative and adaptation 

challenges are intermediate. This SSP can be seen as a continuation of the current trends, it is the SSP 

with medium population growth, medium economic growth and medium technological change 

Adaptation challenges are a result of the exposure to more extreme changes and the resilient capacity 

of the society. Narratives of future changes belonging to these pathways have been sketched. 

With integrated assessment models changes in and absolute quantitative data of amongst other future 

population, urbanization, income, energy use, land use and agricultural production can be estimated for 

the different SSPs. Data for this project have been estimated with the integrated assessment model 

IMAGE of the Netherlands Environmental Assessment Agency (PBL; van der Esch et al., 2017; Stehfest et 

al., 2014). The model outcomes provided information to estimate: 

- Future irrigation efficiency and irrigated area 

https://link.springer.com/article/10.1007/s10584-013-0905-2#CR6
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- Future domestic and industrial water demand 

- Limitations for groundwater abstractions 

Reservoirs 

In addition to the above SSP information that is included in the model simulations we have added 

hydropower reservoirs that are planned to be constructed or under construction (see the assessment of 

Zarfl et al., 2015). As the differentiation in time for the construction of these reservoirs is difficult to 

assess we have included all planned reservoirs for both future time horizons.  

Methods 

 

Model description: PCR-GLOBWB 

The global hydrological model PCR-GLOBWB was employed in this study for the simulation of river flows 

and runoff for Europe (Van Beek and Bierkens, 2009; Van Beek et al., 2011; Lopez Lopez et al., 2016). 

PCR-GLOBWB is essentially a leaky-bucket type of model applied on a cell-by-cell basis. PCR-GLOBWB is 

coded in the PCRaster-Python environment (Wesseling et al., 1996; Karssenberg et al., 2010). A spatial 

resolution of 0.08◦ (∼ 10 km × 10 km at the equator) and a daily temporal resolution were used in this 

study. A schematic representation of PCR-GLOBWB is given in Figure 4. For each time step and cell, PCR-

GLOBWB calculates the water balance components, including the water storage in three vertical soil 

layers (0–5, 5–30 and 30–150 cm) and one underlying groundwater reservoir, as well as the water 

exchange between the layers (percolation, capillary rise) and between the top layer and the atmosphere 

(rainfall, evapotranspiration and snowmelt). Sub-grid variability is taken into account considering the 

variations of elevation, land cover, vegetation and soil. The total runoff of a cell consists of direct runoff 

(saturation excess surface runoff), non-infiltrating melt water, interflow (lateral drainage from the soil 

profile) and base flow (groundwater runoff from the lowest linear reservoir). The simulated runoff is 

routed along the river network based on the Simulated Topological Networks (STN30; Vörösmarty et al., 

2000).  

The model has not been calibrated. Model parameterization is based on global datasets of soil properties, 

vegetation and geological information. This parameterization together with model evaluation details are 

presented in Van Beek et al. (2011) and Sutanudjaja et al. (2014).  

Water abstraction and consumptive water use (domestic, industrial, livestock, irrigation) and reservoir 

management are included the model and have been derived from global datasets (Wada and Bierkens, 

2014). Future changes are based on the Shared Socioeconomic Pathways defined by the IPCC (Van 
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Vuuren et al., 2013). Abstractions for industry, irrigation, domestic use and livestock can be abstracted 

from the surface and groundwater depending on availability and pre-defined abstraction limits. 

 

Figure 4: PCR-GLOBWB model structure, adapted from Van Beek et al. (2011). Symbols’ definitions are as follows: Precip, 

precipitation; Evap, evaporation; T , temperature; S1, first soil layer; S2, second soil layer; S3, third soil layer; S4, groundwater 
reservoir; Qchannel, total runoff; QDR, direct runoff; QIF, intermediate flow; QBF, base flow; and Inf, water flow from the river 
channel to the groundwater reservoir.  

 

Results 

Validation 

Global validation of PCR-GLOBWB has been peer-reviewed published in Van Beek et al. (2011) and 

Sutanudjaja et al. (2014). Here we show the validation results for a number of large European rivers. 

Discharge observations have been obtained from the Global Runoff Data Centre (GRDC). Table 1present 

a number of performance measures and Figure 5 display the monthly average simulated discharge (blue) 

together with the observed discharge (orange). 

Table 1: Performance statistics for river discharges simulated with PCR-GLOBWB compared to GRDC measured discharges. 

Location NRMSE 
(-) 

AbsPercBia
s (%) 

Nash-Sutcliffe 
(-) 

correlation 
(-) 

meanAbsoluteError  
(m3/s) 

KGE 
(-) 

Venlo Meuse 0.42 51.94 0.39 0.84 150.73 0.4
9 

Kienstock Danube 0.19 14.29 0.71 0.85 268.58 0.7
6 

Rheinhalle Basel Rhine 0.20 18.73 0.61 0.88 198.58 0.8
2 

Saultbrenaz Rhone 0.32 22.54 0.33 0.68 105.33 0.6
6 

Wittenberg Elbe 0.48 58.77 -0.15 0.59 211.23 0.3
1 

Ruse Danube 0.23 23.19 0.32 0.75 1350.86 0.6
6 
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The performance for the river Rhine and Danube at Kienstock is very good.  Although for the Rhine the 

model overestimates the observed discharge, yet the variation in time is represented very well 

(correlation of 0.88). For both the Elbe and Meuse the performance is less, especially the base flow is 

highly overestimated for both rivers. The Meuse is a relatively small basin where sub-daily processes are 

relevant while these are not considered in PCR-GlobWB that runs on a daily time-step, furthermore the 

basin contains a number of weirs upstream of Venlo for which the regulation is not included in the model. 

For the Elbe the correlation between simulated and observed flows is lower than for the other basins, 

this in combination with the overestimation of the observed discharge indicates poor performance for 

this basin, which could as well result from too high precipitation amounts in the forcing datasets and 

underestimations of the demand in the Elbe basin. In the Rhone the discharge peaks are highly 

overestimated, this is most likely a result of the presences of many weirs and reservoirs that are used for 

electricity generation. These have a dampening effect on discharge peaks and apparently the reservoirs 

are not represented well in the model, nor is their regulation. 

The above gives an overview of the performance for a selection of rivers spread over Europe. In general 

it has been reported before that global hydrological models tent to overestimate discharges and runoff 

in relatively dry river basins (Sperna Weiland et al., 2015). In general the model performs best in basins 

such as the Rhine where more data is available from ground observations for assimilation in the 

meteorological re-analysis dataset and the global datasets of land use, soil type and geohydrology used 

for the model parameterization. 
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Figure 5: Monthly average discharge large European discharge simulated with PCR-GLOWB (blue) compared with observations 
from the GRDC (orange). 

 

Future scenarios 

PCR-GLOBWB has been run for RCP4.5 in combination with SSP2 and RCP8.5 in combination with SPP5 

for the future time-horizons 2026 and 2056. Discharge regimes have been calculated from a ten year 

window around these future time horizons.  

In the Danube discharge will likely increase. Increases are largest for late winter / early spring this is a 

result of increased temperatures leading to earlier snowmelt and more precipitation falling as snow 
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instead of rain. This also causes a decrease in intra-annual variability. For the Rhine where the discharge 

regime is also influenced by snow fall during winter we see similar changes. Increases in late winter / 

spring discharge and slight discharge decrease in summer. Similar changes can be expected for similar 

snow influenced basins. 

For the Rhone changes are largest and larger than expected. This is mainly caused by strong increases in 

precipitation. For the Ebro flow during the wet months, January to May, will likely increase whereas low 

flows show little changes. For the Elbe an increase in river discharge is projected throughout the year. 

Here the differences between the scenarios are much smaller than the change from the current situation.  

For the Meuse changes are smaller. The winter and early spring months will likely become wetter and 

summer discharge may increase slightly as well, although RCP8.5 projects small decreases for 2056.  

These are some examples for major river basins in Europe that form a representation of similar basins. 

For the Ebro basin in Spain we would, as well as for other basins in the Mediterranean, have expected 

small decreases in flow (see Sperna Weiland et al. 2010) here it should be noted that due to 

computational constraints only one GCM has been applied and herewith not the full range of changes or 

the uncertainty therein is considered. 
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Figure 6: Monthly average discharge changes for large European discharge simulated with PCR-GLOWB based on historic data 
(blue) together with discharges for the different RCPs and future time horizons. 
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2.2  MONERIS 
Lead: Markus Venohr, Andreas Gericke, Roshni Arora, Judith Mahnkopf 

Input data 

All data processing and analysis were conducted on basis of 104,300 hydrological sub-catchments 

(Functional Elementary Catchments, FEC) as spatial modelling units, with a mean spatial resolution of 58 

km² (ECRINS, MARS geo-database). MONERIS requires a variety of input data comprising information on 

hydro-climatic, geo-physical, administrative-demographic conditions.  All input data were derived on the 

maximum spatial resolution and subsequently aggregated as area weighted mean to the FEC level. Table 

2 gives an overview of the main input datasets used for the application of MONERIS.  

Table 2: Brief overview of the main input datasets used for the application of MONERIS 

Dataset Data sources 

Modelling units (FEC), River basin districts ECRINS / MARS geo-database 
river network ECRINS 

water surface areas ECRINS / Venohr et al., 2011 

Hydrology and Climate 

Precipitation Model results PCR-GlobWB 

Evapotranspiration Model results PCR-GlobWB 

Runoff Model results PCR-GlobWB 

water temperature own calculations 
Land use and Land management 

topography – slope / height EU-DEM; ASTER 

land use Corine 2012, ESA 2010 and UC Louvain; ECRINS; GLCC 
soil loss, C-Factor own calculations 

N Surplus on agricultural areas Venohr et al. 2018 

P accumulation own calculations, OECD, EUROSTAT 

soil type HWSD;ESDB; FAO 

tile drained areas Feick et al. 2005 

Hydrogeology IHME 1500  

Other data 

atmospheric deposition of N EMEP MSC-W 

atmospheric deposition of P Behrendt et al. 2002 

solar radiation EUMETSAT - CM SAF 

Population various sources, see Table-A 3 

Sewage collection & treatment own calculations, Eurostat, Table 4, Table-A 5 
WWTPs own calculations, UWWTD 
industrial point sources E-PRTR 

 

Land use information was derived from Corine 2012 (mostly EU countries), GlobCorine 2009 (e.g. EFTA 

countries or Switzerland), and ECRINS Lakes v1.1 (merged with the Corine data) with 100m resolution for 

the entire modelling extent. This mosaicked raster dataset was reclassified to meet the requirements of 
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MONERIS (see Figure 10 and Table-A 1) and used for all land-use related calculations (e.g. soil loss, 

nitrogen surplus, or degree of phosphorus saturation). We created a digital elevation model (DEM) by 

combining the EU-DEM and ASTER G-DEM, in accordance to the process described for land-use data. The 

DEM was intersected with land use to attribute arable land with different slope classes and the FEC with 

mean height and slope information. For agricultural land (mean for arable and grassland), the share of 

tile drained areas was calculated using the dataset by Feick et al. 2005. For each FEC, we calculated the 

area of sandy, silty, loamy and clayey soils as well as fens and bogs from the European Soil Database 

(ESDB) and the Harmonized World Soil Database (HWSD). These data were further used to calculate the 

mean soil nitrogen and clay content.  

The soil loss map is based on the universal soil loss equation (USLE, Equation 1) which considers 

topography (L, S), soil properties (K), land use and land cover (C), and rainfall erosivity (R).  

 

Equation 1:  𝐸 = 𝐿 × 𝑆 × 𝐾 × 𝐶 × 𝑅 

With:  L = slope length factor, calculated according to Fuchs 2010  
S = slope factors, calculated according to Nearing 1997  
K = soil properties, calculated after Gericke 2015 using the Harmonized World Soil Database 

(HWSD) and the European Soil Database (ESDB)  
R = rainfall erosivity, estimated from long-term mean annual precipitation (1961 to 2007) and 

taken from Gericke 2015 
C = land cover factor, distinguished for 60 land use classes after Gericke 2015 using the land use 

mosaic grid described above 
 

Information on hydro-geology were reclassified from the International Hydrogeological Map of Europe 

(IHME 1500) according to Table 3. After translation, the area of all hydrogeological classes per FEC as 

input for MONERIS were derived. 

Table 3: Relationships between MONERIS classes and attributes AQUIFER_TYPE and LITHO5 of the IHME map. 

MONERIS class AQUIFER_TYPE (IHME) LITHO5 (IHME) 

high porosity, 
consolidated 

Highly productive fissured aquifers all 

Low and moderately productive fissured aquifers all 
Locally aquiferous rocks, porous or fissured (Partly) consolidated 

Impermeable, 
consolidated 

Practically non-aquiferous rocks, porous or fissured (Partly) consolidated 

deep groundwater, 
unconsolidated 

 

Low and moderately productive porous aquifers All 
Locally aquiferous rocks, porous or fissured Unconsolidated 

Practically non-aquiferous rocks, porous or fissured Unconsolidated 
shallow groundwater, 

unconsolidated 
Highly productive porous aquifers all 
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Nitrogen balances (see Figure 10) on agricultural areas are a key input dataset for MONERIS and were 

derived using a novel approach by Venohr et al. 2018 as distributed data in the required spatial resolution 

was unavailable. We disaggregated national N balances reported by the countries by distinguishing three 

input compounds: atmospheric deposition, organic and mineral fertilizer application. For each 

compound, individual use efficiency was applied and the resulting distribution was calibrated against the 

reported country-wide means. 

Together with nitrogen agricultural soils are usually fertilized with phosphorus. In contrast to nitrogen, 

phosphorus easily adsorbs or associates to small particles (e.g. loam, silt but also organic and calcareous 

material). This leads to an immobilisation and accumulation of phosphorus in soils. The plant-available 

phosphorus is determined by applying approaches such as P-CAL or Olsen. At the same P content, the 

plant-available share can vary considerably depending on soil type. The amount of plant-available 

phosphorus depends on the share of sorption partners occupied by phosphorus on all available sorption 

partners, also expressed as degree of phosphorus saturation (DPS). Unfortunately, assessment 

approaches like P-CAL or Olsen cannot directly be used to derive the P loss risks from soils by surface 

runoff. Here, water soluble phosphorus (WSP), which can directly be derived from P content in soils, is a 

much better descriptor. 

WSP was calculated as weighted mean (Equation 2) per 500 m grid cell according to Pöthig, Behrendt, 

Opitz, & Furrer 2010 and Pöthig (unpublished data) by distinguishing sand and loamy-silty soils (Figure 

7). WSP values calculated by Equation 2 were limited to a maximum of 60 mg/kg, as the range of observed 

WSP did not exceed this value. 

 

Figure 7: Correlation between P-content in soils and measured WSP in soil samples of Germany and Swiss according to  Pöthig, 

Behrendt, Opitz, & Furrer, 2010 and, Pöthig (unpublished data). 
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Equation 2:   𝑾𝑺𝑷 =
((𝑷−𝒄𝒐𝒏𝒕𝒆𝒏𝒕 × 𝟎.𝟎𝟒𝟓𝟏 × 𝑺𝒂𝒏𝒅 ) + ([𝑷−𝒄𝒐𝒏𝒕𝒆𝒏𝒕] × 𝟎.𝟎𝟏𝟖 ×[𝑪𝒍𝒂𝒚])+ ([𝑷−𝒄𝒐𝒏𝒕𝒆𝒏𝒕] × 𝟎.𝟎𝟏𝟖 ×[𝑺𝒊𝒍𝒕]))

([𝑺𝒊𝒍𝒕]+ [𝑺𝒂𝒏𝒅]+ [𝑪𝒍𝒂𝒚])
 

With:  WSP = water soluble phosphorus, mg/kg  
Sand = share of sand fraction in soils, in % 
Clay = share of clay fraction in soils, in % 
Silt = share of silt fraction in soils, in % 
P-content = Phosphorus content in upper 30 cm soil layer, in mg/kg 

 

As a prerequisite for this we had to derive the spatially distributed P content in agricultural soils. This was 

done on basis of country wide P-accumulation, to calibrate the total P content and using the N-surplus 

described above to derive the spatial distribution of applied fertilizers. This approach was developed, 

tested and calibrated for agricultural soils in Germany first (not shown) and subsequently transferred to 

European data.  

In a first step country wide P balance data on agricultural areas were collected from EUROSTAT, and area 

corrected as described before (see Figure 8). Longest time series ranged from 1985 to 2014, whereas the 

shortest time series only covered data after 2004. To estimate the P-accumulation also fertilisation from 

earlier years had to be considered. From a reconstruction of historic nutrient balances in central Europe 

(Gadegast & Venohr, in prep) we know, that intensive fertilisation already took place in the 1960ies and 

in many European countries found its maximum in the 1980ies. From this we derived following rules of 

thumb: 

1) P-balances in 1960 equal the earliest reported available value per country (between 1985 and 

2004) 

2) In 1950, P-balances were 10 % of the values in 1975 (for this year P balances in all countries were 

positive, but not at their maximum) 

3) In 1980, P-balances were 20 % higher than in 1960. These values were corrected for Estonia and 

Hungary, to ensure, that P-accumulation in all years remained positive. 

   

Figure 8: Available P-balance on country (left) and the accomplished time series (right). 
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The P-accumulation was calculated as the accumulative sum of P-balances over the years (Figure 9).  

 

Figure 9: P-accumulation on agricultural land per country in the period from 1950 and 2014. 

 

The P accumulation was distributed following the approach for N-surplus by Venohr et al. (2018), 

however without taking atmospheric deposition into account, for which spatially distributed data was 

unavailable.  

The P-content was derived from the bulk density information in the LUCAS physical top soil information 

map (Ballabio, Panagos, & Monatanarella, 2016).  First the soil weight of the top 30 cm soil layer 

(ploughing horizon) was calculated (Equation 3). 

 

Equation 3:  𝑺𝒐𝒊𝒍 𝒘𝒆𝒊𝒈𝒉𝒕 = 𝑩𝒖𝒍𝒌𝑫𝒆𝒏𝒔𝒊𝒕𝒚 × 𝑳𝒂𝒚𝒆𝒓𝑫𝒆𝒑𝒕𝒉 ×  𝑼𝑪𝑭 

With: soil weight = soil weight of the top 30 cm soil layer, kg/ha 
 Bulk density = Bulk density, in g/cm³ 

LayerDepth = 30 cm 
UCF = unit correction factor (g/cm²  kg/ha) = 100000  

 

By dividing the corrected and spatially distributed P accumulation by the derived soil weight the mean P 

content in top soils was estimated (Equation 4). 

 

Equation 4:  𝑷_𝒄𝒐𝒏𝒕𝒆𝒏𝒕 =
[𝒑𝒂𝒄𝒄]

[𝑺𝒐𝒊𝒍 𝒘𝒆𝒊𝒈𝒉𝒕]×𝟏𝟎𝟎𝟎𝟎𝟎𝟎
 

With: P-content = Phosphorus content in upper 30 cm soil layer, in mg/kg 
 P-acc = P-accumulation, in kg/ha 
 Soil weight = soil weight of the top 30 cm soil layer, kg/ha 
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DPS was estimated considering the soil type information by LUCAS and considering the transformation 

function published by Pöthig, Behrendt, Opitz, & Furrer (2010) (see Figure 10). P-concentrations in 

surface run-off was finally calculated according to Vadas et al. (2005), which was corrected on basis of 

findings by Fischer et al. (2016), to eliminate effects originating from different soil to water ratios used 

by Vadas et al. (2005) (Equation 5). 

 

Equation 5:  𝑷𝒄𝒐𝒏𝒄𝑺𝑹 = (
𝟏𝟏.𝟐 ∗ 𝑾𝑺𝑷_𝒂𝒓𝒂𝒃𝒍𝒆 + 𝟔𝟔.𝟗

𝟏𝟎𝟎𝟎
) ×  𝑾𝑺𝑷_𝒄𝒐𝒓𝒓 

With: PconSR = P-concentration in surface run-off, in mg/l  
 WSP = water soluble phosphorus, mg/kg 
 WSP_corr = WSP correction factor, without unit) 
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Figure 10: Some of the main input datasets for the application of MONERIS: (a) reclassified land use (b) mean soil loss per FEC in 
t/ha (c) Nitrogen Surplus per FEC in kg/ha*a (d) degree of phosphorus saturation per FEC in % (e) population density for the year 
2010 (f) Inhabitants connected to WWTP and sewer system for the year 2010 [%] 
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Hydrology, climate, and water temperature 

Climate and hydrological data (precipitation, evapo-transpiration, water balance) PCR-GlobWB were 

provided as ascii files with a resolution of 0.83°*0.83° as monthly means (m/month) for the current period 

2001 to 2010 and the future scenarios periods 2026-2035 and 2056-2065. The pre-processing included a 

series of work steps, such as, conversion to GeoTIFFs, re-projection and resampling to a resolution of 

500m*500m and application of the “zonal statistics” tool implemented in ESRI-ArcGIS to calculate FEC 

specific mean precipitation/runoff/evapotranspiration/air temperature weighted means.  

For very small FECs and for coastal FECs not covered by the PCR-GlobWB grids, ArcGIS did not deliver 

weighted mean values. Here, we used the information on the hydrological topology, i.e. the information 

of the next down-stream FEC, given in the ECRINS data set. Like this precipitation and specific run-off was 

transferred to neighbouring FECs. PCR-GlobWB provides data on water balances, which can be negative 

if evapo-transpiration exceeds precipitation. According to PCR-GlobWB negative values water balances 

were calculated for most grids/FECs with dominating shares of water surface areas. However, MONERIS 

requires information on the generated run-off per FEC and negative values had to be substituted by small 

positive values. As this change only had a minor effect on the total run-off of a river basin, a counter 

balancing of the added run-off by subtracting it from other FEC run-off values was renounced. Both 

corrections were conducted using the software package R. 

Deriving scenario values for precipitation and specific run-off required a further correction. The grids for 

current and future conditions provided by PCR-GlobWB showed some small dislocations, which could not 

be removed by ArcGIS functions. These dislocations partly let to erroneous and un-realistic high changes 

between current and future conditions, when values of different grid cells formed the basis for the zonal 

statistics per FEC. To eliminate these inconsistencies we calculated the mean change for groups of FECs. 

These were FECs of a similar elevation in a sub-unit or small river basins. Rather than using the individual 

changes per FEC the mean changes per FEC group was applied to the spatial pattern of current 

precipitation and specific run-off. 

Statistical approaches, most commonly linear regression, offer simple and efficient means to predict 

water temperature of rivers and have been used widely (Webb et al., 2003; Benyahya et al., 2007). Air 

temperature is generally used as the independent variable in regression analysis since it is proxy for the 

net changes in heat flux affecting the water surface (Webb et al., 2003). Water-air temperature 

regression models have been applied successfully at several time scales such as daily, weekly and monthly 

and annual means (Webb and Walling, 1993; Erickson and Stefan, 1996, 2000; Webb and Nobilis, 1997). 

At smaller time scales and at annual scales, air and stream temperature correlations are typically weak 
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and use of linear regression to predict water temperature might not be the best choice (Mohseni and 

Stefan, 1999; Erickson and Stefan, 2000). At monthly scales, however, strong water-air temperature 

relationships are usually observed (Figure 1) and therefore, linear regression yields satisfactory results 

(Erickson and Stefan, 1996; Webb et al., 2003).   

For this study, linear regression analysis was carried out at a monthly scale to derive coefficients for water 

temperature extrapolation. Monitored water temperature data were checked for erroneous (missing, 

lower than 0, higher than 35 °C) values, converted to monthly means (if otherwise) and trimmed for the 

desired time period (2001-2010). The FECs with data containing ≥ 80 water temperature values were 

retained (a complete series has 120 values). For these FECs and air temperature data, data gaps were 

filled with average monthly values for that particular month and station. Linear regressions between air 

temperature and water temperature were then applied within these FECs to obtain the regression 

coefficients (all statistically significant, P < 0.05).  The air temperature coefficient ranged from -0.08 to 

1.3 and the average r² was 0.86 (S.D. = 0.09; n = 2,056). 

Extrapolation of air-water temperature coefficients to FECs without data with less than <80 values was 

done on the basis of similarity in elevation and hydro region. Hence, as a next step, the FECs were 

assigned hydro region classes. Originally, the hydro region classification for Europe consists of seven 

classes. For our calculations, the classes CB_CON and NOR were split in two sub regions each, France, 

Belgium and Luxembourg assigned to new group CB_CON_2 and Norway and Iceland formed the new 

group NOR_2; in total resulting in nine classes.  

 

Figure 11: Plot of water temperature and air temperature (time period = 2001-2010) for a FEC (ID = 35402) situated in Germany. 
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Population, collection and connection rates, WWTPs and industrial point sources 

Annual population data for 2001 to 2010 were collected from a variety of different sources like European 

data from EUROSTAT on a NUTS 3 level and supplemented with country wide data (see Table-A 2). Single 

population numbers were joined to available shapefiles for administrative regions. Gridded population 

data (1 km² spatial resolution) were available for 2006 from GISCO/Eurostat. This dataset was used for 

the spatial description of population density and was modulated between years of the modelling period 

with the relative changes derived from the annual times series on administrative level.  

Further data sets required by MONERIS are the share of households connected to sewer systems and the 

share connected to sewer system and a waste water treatment plant. This data was available from 

EUROSTAT as country wide means for most of the country contributing to the MARS modelling extent. 

Incomplete time series were filled by linear interpolation between years. For countries with missing data 

we transferred the percentage share from countries with similar geo-political conditions (Table 1). 

The country wide connection rate had subsequently to be broken down to FEC level. To do this 

connection rates to sewers given for 175 Nut-2 units (out of 1373 NUT-2 units in Europe) between 2002 

and 2010 were used to build a simple population density driven model, following to steps. In a first step 

we used a sigmoidal function to develop the base distribution of connections rates (Figure 12, Equation 

6). In a second step the calculated spatial distributed raw connection rates had to be corrected to fit the 

reported national wide mean connection rates (Figure 12, Equation 7, Table 4).  

 

Equation 6: ConRateToSewers = 
1

1.001+1∗10−8 𝑃𝑜𝑝𝐷𝑒𝑛𝑠4.5  100 

With: PopDens = population density, in habitant / km² 

 

Equation 7: ConRate_FEC_corr =    (
𝐶𝑜𝑛𝑅𝑎𝑡𝑒_𝐹𝐸𝐶

100
)

𝐶𝑆𝐶𝑇
100 

With: CSCT = country specific correction term 
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Table 4: Completed national statistic on inhabitants connected to sewer systems in the years 2000-2011 based on reported data 
from (EUROSTAT). Colour code: coloured cells indicate countries, for which the same connection rate was assumed; red numbers 
indicate countries to which connection rates were transferred. No-coloured cells with red figures indicate Years, for which 
connection rates were calculated from linear interpolations. 
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Figure 12: Dependency of connection rate to population density for 175 NUT2 units in 16 European (AT, BG, CY, CZ, DE, EL, FR, 
HU, IE, LV, NL, PL, RO, SI, SK, TR) countries (left). Corrected connection rates at different CSCT compared to the base model. 

 

The same procedure was applied to derive and correct connection rates for inhabitants connected to 

sewer and WWTP (Table-A 5). The share inhabitants connected to sewer and WWTP must by definition 

always be lower than the rate of inhabitants connected to sewers (but not necessarily to a WWTP). For 

some countries this prerequisite partly or in total was not given and had to be corrected, by setting the 

share of inhabitants connected to sewers and WWTP to the connection rate to sewers only.  Further in 

some countries the reported connection rate to WWTP was expressed as shares on the number of 

inhabitant connected to sewers. This was translated into shares on the total population, accordingly. 

 The derived connection rates to sewers and WWTP do not consider if and where inhabitants from several 

FEC are connected to the same WWTP, i.e. in which FEC WWTP effluents are discharged. This information 

was taken from the UWWTD inventory (Waterbase-UWWTD: The European Topic Centre on Inland, 

Coastal and Marine waters. Version 5, date of delivery (date sent to the Data Service): 18/02/2015.; E-

PRTR-database: European Commission Directorate-general for Environment), containing information on 

the location of a WWTP and the treatment capacity. We used version 5 of the UWWTD inventory 

(reporting year 2012) as basis for our analysis. But, in particular for Finland, in former versions WWTPs 

were reported including inhabitant capacity, which was missing in the following versions. Therefore, for 

all WWTP named in version 5, we checked, if in former version capacities have been reported and 

included these in the used inventory, assuming that the total amount of waste water from connected 

household does not decline from past to present. 

Treatment capacity was assumed to reflect the actual number of connected inhabitants. Comparing the 

number of inhabitants connect to sewer and WWTP as described above and the UWWTD inventory 

showed that the latter in average is 1.7 times higher than the number of inhabitants derived from the 

country statistics (Figure 13).  
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Figure 13: Comparison of inhabitants connected to WWTP derived from country statistics (years 2006-2011) and the UWWTD 
inventory (year 2012). 

 

This difference can be explained by water from industries and sealed urban areas treated in WWTP but 

not considered as inhabitants in country statistics. In countries for which no WWTP inventory was 

available, the share of connected inhabitants per FEC was increased by a factor of 1.7 and WWTPs added 

to the inventory accordingly. Further, for countries where the reported inventory included a smaller share 

of inhabitants then such derived from the country statistics, the WWTP inventory was corrected 

accordingly. 

For 4534 WWTP reported Inhabitant capacities as well as TN and TP loads were available from the 

UWWTD inventory. Discharges originating from inhabitants, precipitation and industry were in general 

not reported and had to be estimated. Inhabitant specific water consumption was set to 100 l/Inh/day. 

For the WWTP inventory also discharges from industry and sealed urban areas had to be included and 

have been estimated under consideration FEC based mean long-term precipitation (Equation 8). Here, 

we the ratio of precipitation and water consumption based discharge was estimated from the ratio 

described above. 

Equation 8:    𝑊𝑊𝑇𝑃𝑄 =  (
1

1.7
𝐼𝑛ℎ𝑎𝑏𝑠 100 ∙ 365 + (1 −

1

1.7
) 𝐼𝑛ℎ𝑎𝑏𝑠 100

𝑃𝑃𝐿𝑇

800
365) 

 

With: WWTPQ = annual discharge from a WWTP, in l/yr 

Inhabs = reported inhabitant equivalent, in heads 

PPLT = long-term mean precipitation, in  mm/yr 
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Additionally, for the WWTPs without reported TN and TP effluent concentrations had to be derived. This 

was also done on basis of the 4534 WWTPs with a complete dataset from the UWWTD inventory. Mean 

effluent concentrations per WWTP size class were derived from the reported nutrient loads and the 

calculated discharges.  

 

Table 5: Mean WWTP size specific effluent nutrient concentrations derived from the UWWTD inventory, calculate as discharge 
weighted mean from all WWTP of a specific size class. 

Reported WWTP Share on 
total discharge 

discharge weighted  
mean concentration 

size class connected  
inhabitants  

count share TN TP TP TN 
 

 In thousand # % % % mg/l mg/l 

1 < 2 47 1 0.2 0.4 19.6 118.1 

2 2 – 5 718 16 2.1 5.7 7.6 35.2 

3 5 – 10 778 17 3.2 7.8 4.6 24.2 

4 10 – 50 1938 43 22.0 25.3 1.8 19.5 

5 50 – 100 558 12 16.4 14.8 1.2 17.3 

6 100 – 500 433 10 31.0 25.6 1.0 15.3 

7 >500 62 1 25.1 20.5 1.1 17.8 

Total 
 

4534 100   1.4 41.4 

 

Other data 

The total deposition of reduced nitrogen and oxidized nitrogen was calculated as the average monthly 

deposition (kg km-2) per FEC using the Co-operative Programme for Monitoring and Evaluation of the 

Long-Range Transmission of Air Pollutants in Europe (EMEP/MSC-W model version rv4.5, data for 2001-

2010). The deposition rate of phosphorus, which depends on the land use of the observed area, lies 

between 0.3 and 3.0 kg P/(ha·a). Behrendt et al. (2002b) derived an average value of 0.37 kg P/(ha·a) for 

European catchment areas. This value was defined as constant for the whole calculation period and 

modelling extent. The surface incoming shortwave radiation (SIS) was calculated as the average monthly 

mean per FEC in W/m2 from EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF).  

 

Scenarios 

As shown in Figure 2 and Table 18 changes in various input data were considered for the two future 

periods (2026-2035 and 2056-2065) for two different story lines 1) Techno world and 2) Consensus world. 

For deriving future conditions on FEC level we used in most cases data sources different from those used 

for current conditions. In order to derive scenario conditions consistent and comparable to current 
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conditions, we, in most case, derived changes based on the scenario data sources and applied the relative 

(percentage) changes to the data set derived to run and validate the model under current conditions. 

Hydro-climatic data were derived using model results from PCR-GlobWB (see Chapter 2.1). For MONERIS 

additional changes have been considered. To estimate water temperature for the four scenarios periods, 

the respective air temperature provided by PCR-GlobWB data was used. Here, we used the regression 

coefficients derived for current conditions, assuming unchanged air-water temperature relations. Here, 

the same approach as described in MONERIS – input data was applied. 

Future land use was available as GLCC maps from the SCENES project (according to MARS deliverable 

2.1). As SCENES data do not provide the same land-use classes (Table-A 1) and spatial resolution as the 

Corine data set, used for our modelling task, we applied the relative land use changes (between current 

and future situations) to the current land on FEC level use derived from Corine. Population data have 

been extracted from the IIASA (International Institute for Applied Systems and Analysis) SSP database 

(MARS deliverable 2.1) and transferred to FEC level. Demographic changes had further to be considered 

for collection and treatment of waste water. Her in principle it was assumed that new additional 

inhabitants (population increase) is connected to a sewer systems and a WWTP. In turn for a population 

decrease it was assumed that first households without a connection to collection and treatment are 

abandoned. This basically represent a land-urban migration as found in many regions. Additionally, to 

this an overall increase in waste water collection was assumed. For Storyline 1 around 2030 and 2060 a 

general increase of sewage collection and treatment by 10% and 20%, respectively, was assumed 

(Equation 9). For Storyline 2 an additional increase of the collection rate in rural areas was assumed 

(Equation 10). 

 

Equation 9:    𝐶𝑜𝑛𝑛_𝑆𝐿12030/60 = 𝐶𝑜𝑛𝑛2010 + 𝑎 

Equation 10:    𝐶𝑜𝑛𝑛_𝑆𝐿22030/60 = 𝐶𝑜𝑛𝑛_𝑆𝐿12030/60 + (100% − 𝐶𝑜𝑛𝑛_𝑆𝐿12030/60) ∙ 𝑏 

With: Conn_SL12030/60 = Share of collected and treater waste water in 2030 for Storyline 1, in %  

Conn2010 = Share of collected and treater waste water under current conditions, in % 

a, b = increase factor, 2030 = 10 %, 2060 = 20 % 

Further, a general reduction of TN and TP effluent concentrations for all treatment plants sizes by 25%, 

with unchanged domestic water consumption was assumed. This reduction was assumed for both 

periods and storylines. 



  
Deliverable 7.2-1 – MARS Suite of Tools II:  
Scenario Analysis Tool (SAT) 

 

Page 36/93 

Three different mitigation measures were considered, to be applied in addition to the changes assumed 

for the storylines: 

1) During the last years several measures throughout the European countries have been put in place 

to reduce nitrogen surplus. These have partly been successful and in many places an increased 

use efficiency of applied fertilizer and a reduction of N surplus have been reported. Nonetheless, 

mostly in areas with high livestock densities, N surplus, mostly caused by manure is still far too 

high and does not meet European regulations. In short, the excess in N surplus can be to a large 

share explained by too much und insufficiently distributed manure. As during the last decade no 

clear reduction in livestock densities can be found in most European countries the mitigation 

measures addresses an improved distribution of manure, rather than a reduction of produced 

manure. The measure assumes that manure can be dried and efficiently transported and 

distributed across Europe. Further we assume that the dried manure replaces 80 % of the 

currently applied mineral fertilizer and can be applied with the same use efficiency as mineral 

fertilizer. Like this in no places N surplus will increase, but the current hot-spot regions will see a 

massive reduction in n surplus. For Romania, Moldova and Ukraine, however, N surplus was set 

to 30 kg/ha with a UE of 75%, as intensification in agricultural production was assumed.  

2) An implementation of riparian buffer stripes along 75 % of all rivers and brooks was assumed. 

The retention efficiency of the buffer stripes was estimated according to Venohr et al. (2011), in 

dependence from their width. As soil loss is dependent, among other factors, by the slope of an 

area, we assumed a buffer width of 2-5m, 5-10m, and 10-20m for slopes <2%, 2-4%, and >4%, 

respectively. Here, the mean slope of arable land was used for class selection. Although different 

retention efficiencies are known for dissolved and particulate material, we applied for this large 

scale modelling task fixed retention rates for nitrogen and phosphorus of 30%, 50%, and 80% for 

buffer with of 2-5m, 5-10m, and 10-20m, respectively. Further effects of buffer strips like, 

temperature regulation, carbon source or habitat have not been considered. 

3) A further reduction of WWTP N and P effluent concentrations by 50 % related to current 

conditions (see above and Chapter 2.2 - Input data). 

 

Methods 

MONERIS (MOdelling Nutrient Emissions in RIver Systems, Venohr et al. 2011) is a process-oriented 

model, for quantifying nutrient fluxes, i.e. emissions from the catchment to the surface waters, in-stream 

retention and resulting loads/concentrations in surface waters. The model considers 7 different 
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emissions pathways: atmospheric deposition on surface waters, surface runoff, erosion tile drainages, 

interflow-groundwater, urban systems and point sources. All calculations are conducted on basis of 

hydrological sub-catchments. In the case of the MARS project we used the Functional elementary 

Catchments (FECs) as described below. The model is designed to work on annual basis, however, 

emissions can also be disaggregated to monthly values and in-stream retention and transport can be 

calculated on monthly basis. While point source emissions are discharged directly to surface waters, the 

modelling of diffuse emissions needs contemplating pathway-specific nutrient transport and retention 

processes.  After entering surface waters nutrients are further retained, transported and transformed in 

surface waters. In contrast to these model-inherent approaches, water balances, soils-loss, or nutrient 

balances are required as input data.  

A main principle during the model development was to establish and calibrate the different modules 

addressing pathways-specific processes independently to minimize the risk of a factitious accuracy of a 

potentially over-parameterised model. The basic principles of the individual pathway modelling 

approaches are described in the following. 

 

Figure 14: Structure of the MONERIS model showing the external framework, catchment characteristics, pathways, and surface 
waters. 

 

Atmospheric deposition und water surface areas: Deposition on water surface areas is considered as 

direct input and derived from N deposition maps. An equivalent data source for P deposition is currently 

not available. We assumed a constant P deposition of 0.37 kg P/(ha·a) (Behrendt et al. 2002) for all surface 

waters in Europe. Whereas larger lakes and rivers are shown as polygons of a known size, in large-scale 

GIS maps, smaller rivers are often only considered as line elements and are commonly not attributed 
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with area or width information. To estimate the water surface of these smaller river sections the approach 

by Venohr et al. (2005, 2006) was used. This calculates a mean river width per FEC on basis of specific run-

off, slope and catchment size. Subsequently, the length of the river section per FEC is derived from the GIS 

map, corrected by factor to reduce scale-dependent generalisation effects, and multiplied with the 

calculated width. The total water surface area further considered areas from the larger lakes and river 

given in the map. This approach was applied separately for main river (MR) and tributaries (TRIB) of all 

FECs.  

Erosion: Surface run-off is calculated as function of the mean annual run-off on basis of a flow 

disaggregation approach by Carl et al. (2008). Here it is assumed that all areas except from urban areas 

and water surface areas contribute to surface run-off generation. Nitrogen concentrations in surface run-

off are derived from atmospheric deposition and N-surplus and on for phosphorus from the phosphorus 

saturation of soils. 

Sediment and nutrient emissions via erosion are calculated based on the universal soil loss equation 

(USLE). Soil loss is considered separately for arable land of different slope-class, and for land use types 

grass land, forest, glaciers and open areas. The share of contributing areas (sediment delivery ratio), with 

a slope of more than 1.5 %, is calculated with an empirical equation calibrated by Behrendt et al. (2002) 

based on a 25 m resolution digital elevation model. For phosphorus a fixed enrichment ration of 1.86 

according to Wilke and Schaub (1996) assumed. 

Surface run-off: Surface run-off is calculated as function of the mean annual run-off on basis of a flow 

disaggregation approach by Carl et al. (2008). Here it is assumed that all areas except from urban areas 

and water surface areas contribute to surface run-off generation. Nitrogen concentrations in surface run-

off are derived from atmospheric deposition and N-surplus and on for phosphorus from the water 

extractable phosphorus in agricultural soils.  

P concentrations in surface run-off are calculated according to Vadas et al. (2005), including a correction 

factor derived by Fischer et al. (2016), to eliminate effects originating from different soil to water ratios 

used by Vadas et al. (2005) in Brazil and Europe. 

Tile drainages: Tile drained agricultural soils can be a major source for nutrient emissions. Nutrient 

concentrations are calculated on basis Nitrogen surplus, under consideration of plant up-take (fixation) 

under grass land and denitrification in the saturated soil zone (for further details see Heidecke et al. 

2015). Phosphorus concentrations are considered as soil dependent values as shown in Table 6. Discharge 

via tile drainages is calculated as percentage share of monthly precipitation according to Hirt et al. 2009. 

Table 6: Considered soil-type specific TP concentrations for the calculation of emissions via tile drainage and groundwater.  
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 TP concentrations (mg/l) in 
tile drainage groundwater 

Sandy soils 0.2 0.1 
Loamy soils 0.06 0.03 
Fen 0.3 0.1 
Bog 2.0 0.2 
Forest  0.02 

 

Interflow-groundwater: Groundwater discharge per FEC is calculated as residual from the total run-off 

minus all other flow components considered for the pathways described above. Phosphorus 

concentrations are considered as described in Table 6. Nitrogen concentrations are calculated similar as 

for tile drainages, but additionally considering groundwater retention time. Here, N-surplus is considered 

as mean value during the ground water retention period. 

Urban systems: For urban systems basically four different emissions pathways are considered: sealed 

urban areas connected to separate or combined sewer systems and households connected to waste 

water treatment plants or to decentralised treatment systems. Sealed urban areas are derived from the 

urban area given in the land-use map, corrected by population densities. The share of areas connected 

areas was taken from country wide statistics, again, disaggregated by population density information (see 

input data). The share of used combined or separated sewer systems was estimated based on an 

approach by Behrendt et al. 2002, assuming that due to the lower construction work combined sewers 

are predominately in place under consolidated rock, whereas separate sewers are preferred in presence 

of un-consolidated undergrounds. Waste water treatment plants were considered as inventory 

containing information on connected population, discharge and effluent concentrations. From the 

country wide statistics on connect rates we derived the share of households connected to decentralised 

treatment plants as residual. For these a fixed small retention capacity was assumed (TN: 10%, TP; 7%). 

Further it was distinguished whether effluents are discharged via a pipe directly to surface water or via a 

soil-groundwater discharge. For the latter case additional retention processes as considered for the 

groundwater pathways were used. 

In-stream nutrient retention: The phosphorus retention approach in MONERIS was originally developed 

to describe mean annual net retention in surface waters. As MONERIS was applied on a monthly basis, 

the processes of sedimentation and (possible) remobilisation had to be considered. Additionally, the 

former approach was unable to differentiate between retention conditions in mountainous and lowland 

rivers, which is also addressed by the new approach. Sedimentation depends on flow velocity and particle 

size, whereas remobilisation is controlled by sheer stress. Both flow velocity and sheer stress express the 

power which the flowing water provides to transport sediments. At lower flows also finer sediments are 
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deposited whereas finest particles may still be remobilised. Looking at the actual processes in real-time 

sedimentation and remobilisation are therefore no functions of absolute flow, but of changes in flow. At 

higher flows large particle sediment and also larger particles are remobilised. Consequently, 

sedimentation and remobilisation can occur at any flow condition but are relevant for different particle 

sizes. 

Looking at mean monthly conditions, the co-existing sedimentation and remobilisation can be simplified 

to a net retention. The basic assumption of the new monthly approach is that in rivers, on a long-term 

perspective, sedimentation and remobilisation are (almost) balanced. “Balanced” does not necessarily 

mean that there is no net-retention of sediments on a mid- or long-term perspective. In drier years net-

retention (due to sedimentation) can occur, whereas in wetter years (not even extreme floods) sediments 

even of several years can be remobilised. This leads to the assumption that for each river stretch an 

equilibrium between sedimentation and remobilisation can be assumed at mean runoff, depending on 

the distribution of particle size. With the new monthly approach sedimentation is calculated as a steady 

process with changing rates and considers monthly runoff, water-surface area and slope. Remobilisation 

is only considered if mean long-term run-off is exceeded. MONERIS as a static, empirical model does not 

provide information on sediment pools and P content in sediments. So, remobilisation rates were coupled 

to the P emissions and incoming loads from headwater catchments and receiving water, respectively.  

A further improvement is the slope-dependent calculation of both processes. Basically, for both 

processes, hydraulic load (i.e. runoff divided by water-surface area) was considered as major control. For 

identical flow conditions and river widths, the flow velocity is higher in mountainous rivers, given their 

smaller depth and cross-section area compared to lowland rivers. Therefore, sedimentation and 

remobilisation rates decrease with increasing river slope. Figure 15 conceptually shows the resulting 

sedimentation and remobilisation rates for changing hydraulic loads, for a lowland and mountainous 

river. 

Nitrogen retention follows an approach by Venohr (2006) and Venohr et al. (2011). For nitrogen 

denitrification as main and permanent retention process was considered. Here, the water temperature 

as indicator for the activity of denitrifying bacteria and the ration of water volume per sediment area 

(expressed as hydraulic load = annual mean run-off divided by water surface area) are used as central 

drivers.  
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Figure 15: Response of the new approach for P retention and remobilisation to hydraulic load (HL), left: large rivers - mean HL = 
10000 m/yr, mean slope = 1 %), middle: small lowland brook - mean HL = 500 m/yr, mean slope = 1 %), right: small hilly brook - 
mean HL = 1000 m/yr, mean slope = 15 %).  

Results 

MONERIS delivers three main results: a) nutrient emissions per pathway, land-use, FEC and month, b) in-

stream retention of nutrients in main rivers and tributaries and main rivers per month and FEC, and c) 

resulting nutrient loads and concentrations at the outlet of a FEC per month. As the scenario analysis tool 

only considered the modelled concentrations in surface waters, this chapter will only briefly describe the 

general results and conclude on the validation of the modelled loads and concentrations. 

As a mean for 2001 – 2010 in total 6629·103 tons nitrogen and 292·103 tons phosphorus per year are 

emitted to surface waters in the entire modelling extent. This equals a mean area specific emission of 11 

kg ha-1yr-1 and 48 kg km-²yr-1. However, these values vary considerably among pathways and source areas 

(Table 7) and countries (Figure-A 3). Comparing emissions from different land-uses types, arable land 

with areas share of 33% contributes 47 % and 35% of total nitrogen and total phosphorus emissions, 

respectively. This ratio becomes even more disbalanced, when looking at the individual share of FECs on 

the total emissions (Figure 17). According to Figure 16  20 % of the total area contributes 50% and 58% 

of the total nitrogen and total phosphorus emissions. 

 

 

Figure 16: Comparison of the accumulative share of FECs on the total area and their share on the total emissions, for nitrogen 
and phosphorus in the entire MARS modelling extent. 
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Nutrient retention was modelled as function of the hydraulic load and water temperature (TN) and on 

basis of mean sloe and hydraulic load (TP). Hydraulic load is defined as the ratio between run-off divided 

by water surface area. In general, with increasing water surface area and decreasing run-off TN and TP 

retention increases. Additionally, TN retention is modulated by varying water temperature (increasing 

retention with increasing temperature), whereas TP retention in general decrease with increasing slope 

and flow velocity. These patterns are well described by the spatial distribution of the mean TN and TP 

retention in surface waters of a FEC (Figure 17). In general TP retention is considerably lower than TN 

retention, but can reach values of 30% in presence of lakes. 

Applying the calculated retention to the nutrient emissions and adding a routing function to this, the 

resulting loads in surface waters are calculated. Here, it is important to note, that retention in surface 

waters is calculated in a cascade-like way, meaning that the load leaving a FEC is subject to retention in 

the main river of the next downstream FEC.  

The model validation was done by comparing calculated and observed run-off and concentrations, 

obtained from the European Water Archive of the Global Runoff Data Centre (GRDC-EWA). As the present 

modelling task was done in context of the MARS scenario analysis tool (SAT) development, and as the 

SAT works on the mean annual conditions during the period 2001-2010 we restricted the load comparison 

to corresponding data. A central input data for MONERIS was the modelled run-off provided by PCR-

GlobWB. For the validation of the modelled run-off please see Chapter 2.1). When comparing all 

modelled and observed loads a high deviation with a poor statistical agreement was found.  

Table 7: Share of both nitrogen and phosphorus emissions from different land-use types and via considered pathways, area 
specific emission for nitrogen in kg/ha and for phosphorus in kg/km², numbers in brackets represent the share on the total 
nitrogen or phosphorus emissions. WSA = water surface area. 

Land use WSA Arable 
land 

Grassland Forest Urban 
area 

Other 
Areas 

Total 

Area in km² 210965 2052587 411781 2769989 219559 469221 6134102 

area share in %  3 33 7 45 4 8 100 

Nitrogen emission in kg ha-1 yr-1 (share on total emission in %) 

atmospheric 
deposition 

6 (2) 
     

0.2 (2) 

surface run-off 
 

7 (2) 1 (0.7) 0.5 (2) 
 

0.4 (0,3) 0.6 (6) 

Erosion 
 

0.39 (1) 0.03 
(0.02) 

0.05 (0.2) 
 

0.004 
(0.003) 

0.2 (1) 

tile drainages 
 

2 (7) 0.5 (0.3) 
   

0.8 (8) 

groundwater 
 

12 (36) 18 (11) 3 (13) 6,4 (2) 7 (5) 7 (67) 

urban systems     
              from 
this: 

    
19 (6) 1 (1) 0.8 (7) 

sewer systems 
    

2 (0.7) 
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DCTP 
    

17 (5) 
  

point sources 
    

27 (9) 
 

0.9 (9) 

Total (N) 6 (2) 15 (47) 19 (12) 4 (16) 52 (17) 9 (6) 11 (100) 

Phosphorus emission in kg km-2 yr-1 (share on total emission in %) 

atmospheric 
deposition 

36 (3) 
     

1 (3) 

surface run-off 
 

2 (2) 5 (1) 4 (4) 
 

10 (2) 4 (8) 

Erosion 
 

34 (24) 2 (0.3) 3 (3) 
 

0.3 (0.04) 13 (27) 

tile drainages 
 

3 (2) 5 (0.8) 
   

1 (3) 

Groundwater 
 

11 (7) 20 (3) 5 (5) 31 (2) 27 (4) 10 (21) 

urban systems 
              from 
this: 

    
188 (14) 9 (1) 7 (15) 

sewer systems 
    

54 (4) 
  

DCTP 
    

134 (10) 
  

point sources 
    

303 (23) 
 

11 (23) 

Total (P) 36 (3) 49 (35) 33 (5) 13 (12) 521 (39) 45 (7) 48 (100) 
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Figure 17: Some of the main results delivered by MONERIS: (a) specific nitrogen emissions in kg/ha (b) specific phosphorus 
emissions in kg/km² (c) nitrogen retention in % (d) phosphorus retention in % (e) DIN concentrations in mg/l (f) phosphorus 
concentrations in mg/l 



  
Deliverable 7.2-1 – MARS Suite of Tools II:  
Scenario Analysis Tool (SAT) 

 

Page 45/93 

 

Figure 18: Comparison of mean modelled and observed TN and TP loads for the years 2001-2010. Categories are characterised 
by catchment size, deviation between modelled and observed run-off (provided by PCR-GlobWB), and the number of monitoring 
years from GRDC-EWA. For attribution of categories see Table 8. 

Table 8: Comparison of mean modelled and observed TN and TP loads distinguished by categories. 

Category 
Catchment  
area in km² 

deviation 
mod.-obs. 

 run-off in % 

Available 
monitoring 
years (TN) 

regression 
coefficient r² 

mean abs. 
deviation  

in % n 

Total Nitrogen 

1a < 1000 > 50 < 6 0.30 0.06 264 36 

1b < 1000 > 50 ≥6 -0.05 0.00 2034 12 

2a > 1000 > 50 < 6 3.49 0.97 198 5 

2b > 1000 > 50 ≥6 0.15 0.19 96 31 

3a < 1000 < 50 < 6 0.90 0.52 92 54 

3b < 1000 < 50 ≥6 1.16 0.76 237 13 

4a > 1000 < 50 < 6 0.68 0.75 45 26 

4b > 1000 < 50 ≥6 0.91 0.97 58 29 

 

> 1000 all ≥6 0.59 0.63 77 61 

all < 50 ≥6 0.92 0.97 115 43 

all all all 0.60 0.64 242 206 

Total Phosphorus 

1a < 1000 > 50 < 6 0.78 0.54 440 39 
1b < 1000 > 50 ≥6 0.00 0.04 2896 21 

2a > 1000 > 50 < 6 0.06 0.00 3684 4 

2b > 1000 > 50 ≥6 0.01 0.03 5640 34 

3a < 1000 < 50 < 6 0.41 0.08 191 63 

3b < 1000 < 50 ≥6 0.35 0.16 63 19 

4a > 1000 < 50 <6 0.85 0.40 86 22 

4b > 1000 < 50 ≥6 0.61 0.83 52 41 

 

> 1000 all ≥6 0.07 0.09 2592 76 

all < 50 ≥6 0.61 0.84 55 61 

all all all 0.01 0.02 1254 243 
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Consequently, we distinguished different categorise of montoring data and FECs. Monitoring data were 

not completely available for the entire modelling period. We assumed that time series covering less than 

6 years are not representative for the modelling period and should not be used for the comparison. 

Nutrient emissions and resulting loads are strongly driven by run-off. In order to have a sound data base 

for assessing the model performance of the water quality model MONERIS from it’s the error caused by 

input data we distinguished monitoring stations with a deviation in modelled (PCR-GlobWB) and 

observed run-off smaller/higher than 50%. Lastly, the SAT focusses on a European wide assessment of 

stressors and does not aim to provide individual results on local scale. Consequently, we split the available 

data set in monitoring stations with a catchment smaller (larger than 1,000 km². The combination of these 

attributes formed 6 different categories of monitoring stations (see Table 8 and Figure 18). In general, 

for catchments larger 1,000 km² or less than 50 % deviation for run-off (both with more than 6 years 

data) provide a reasonably good agreement between observed and modelled loads. Underestimate in TP 

loads (for Q-dev. < 50%) is mostly caused by two monitoring stations. Stricter assumptions for the 

maximum acceptable run-off deviation would in general lead to a considerable improvement of the 

statistical agreement between modelled and observed loads but would also reduce the data set 

significantly.  
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3. JOINT GEO-DATABASE, DATA ANALYSIS AND POST-PROCESSING 

3.1  HYDROLOGICAL INDICATORS 
Lead: Yiannis Panagopoulos, Kostas Stefanidis  

Towards the need for a comprehensive large-scale hydrologic stress analysis in MARS, we have tried to 

assess the hydrologic alteration of European rivers. Hydrologic alteration is attributed to water 

abstractions for the satisfaction of urban, industrial and agricultural needs and expresses the hydrologic 

stress of rivers and streams, namely the disturbance or deviation of their hydrologic regime from the 

ideal undisturbed or natural conditions. 

In MARS Deliverable 5.1 related to WP5 we had conducted a European scale analysis of hydrologic data 

at the resolution of the Functional Elementary Catchment (FEC) (http://www.eea.europa.eu/data-and-

maps/data/european-catchments-and-rivers-network). Simulated daily time-series of river flows from 

the PCR-GLOBWB global model (Van Beek et al., 2011, Sutanudjaja et al., 2014) were used based on a 

hypothetic near-natural scenario where water abstractions from water bodies did not exist and an 

anthropogenic scenario with water abstractions occurring. The latter practically represented the reality. 

Many hydrologic indicators expressing the characteristics of the rivers’ hydrologic regime were calculated 

for all FECs with the Indicators of Hydrologic Alteration (IHA) methodology and software package and the 

deviations of the indicators’ values between the two scenarios were used as proxy metrics of hydrologic 

alteration or hydrologic stress of rivers. 

For the needs of WP7 and the present deliverable in particular, we followed the same procedure to assess 

the hydrologic alteration of rivers at the FEC level due to future climate and socio-economic changes. We 

have chosen two future scenarios that give rise to four future scenario runs, namely: RCP4.5 in 

combination with SSP2 for the future time-horizons 2026-2035 and 2056-2065 and RCP8.5 in 

combination with SPP5 for the future time-horizons 2026-2035 and 2056-2065 as well (see Chapter 2 

above). Daily discharge time-series have been calculated with the PCR-GLOBWB global model again after 

changing climate and management input according to each scenario. We used as basis the natural 

scenario results to compare our new findings and estimate the hydrologic alteration under future 

conditions. 

This chapter describes briefly the Indicators of Hydrologic Alteration (IHA) approach (Richter et al., 1996), 

used to address hydrologic stress in Europe at the FEC level. The methodology also describes how we 

associated simulated hydrologic data to the thousands of FECs across Europe. The results are presented 

http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network
http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network
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and discussed through maps which show the change in future river characteristics across Europe from 

the near-natural scenario. 

Input data 

The implementation of the proposed IHA method requires time series of daily flows for at least 10-15 

years. This means that a detailed dataset covering the whole Europe and containing the needed 

information is crucial for the objectives of this work. Data from gauged sites that meet the above 

requirements are rare. But given that we look for future data, observations cannot meet this requirement 

anyway. Thus, we take advantage of modelled hydrology data simulated by the large scale hydrology 

model PCR-GlobWB (Van Beek et al., 2011, Sutanudjaja et al., 2014).  

The model includes an online water demand scheme to estimate irrigation water requirement. Briefly, 

this scheme separately parameterizes two different irrigated crop groups: paddy and non-paddy, 

aggregated from 26 crop classes from the MIRCA2000 dataset (Portmann et al., 2010) that accounts for 

various growing season lengths under different regional practices and climatic conditions. Other sectoral 

water demands include livestock, industry and households. Data for those sectors were obtained from 

several sources for the historic simulations (see MARS Deliverable 5.1) and have been developed for 

future conditions based on the MARS storylines (see Chapter 2.1 above).  

PCR-GlobWB simulations have been performed for a historic 10-y period under both a naturalized (no 

abstraction) run and an anthropogenic run (with human influence). Here the main characteristics of these 

scenarios are listed. 

Near-natural (no abstraction) scenario: 

o A grid-cell in this scenario constitutes up to three land cover classes: short vegetation, tall vegetation 

and surface water bodies.  

o Basically, the parameters for the first two land cover classes are based on the Global Land Cover 

Characteristics Data Base Version 2.0 (GLCC 2.0, http://edc2.usgs.gov/glcc/globe int.php). 

o Fractions of land cover classes are assumed to be fixed throughout the entire model simulation (e.g. 

no deforestation), i.e. there is no land use/cover change. For this scenario, only natural surface water 

bodies, e.g. rivers, wetland and lakes, are considered. Reservoirs (dam constructions) are not 

simulated. 

o No water demand was simulated, and, therefore, no water abstraction.  

http://edc2.usgs.gov/glcc/globe%20int.php
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Anthropogenic scenario: 

o A grid-cell in this scenario constitutes up to five land cover classes: short natural vegetation, tall 

natural vegetation, surface water bodies (including reservoirs), as well as two classes of irrigated 

crop types: paddy and non-paddy types.   

o The parameters for the first two classes (natural, non-irrigated land types) are basically based on the 

GLCC 2.0.  

o For this scenario, areal extents of fractions of all land cover classes change on yearly basis, 

particularly due to expansion of irrigated areas and progressive construction of dams/reservoirs. 

Therefore, land use/cover change is simulated. 

o To parameterize the reservoirs, the GRanD dataset was used.  

o Water demand is simulated and, therefore, water abstraction is also simulated.   

The result of the two scenarios was two data sets of daily discharges for a ten year period (2001-2010). 

The purpose of the natural scenario dataset is to simulate the hydrologic conditions in Europe under a 

status of minimal anthropogenic pressures on water from abstractions and land use modifications. By 

implementing the IHA method for analysing these two hydrologic datasets we have compared the results 

and derived a degree of alteration between the baseline conditions and the near-natural scenario 

expressing proxies of pressures related to hydrologic alteration (MARS Deliverable 5.1). 

Here, based on IHA methodology we analysed the four hydrologic datasets that represent four future 

scenario runs.  These runs are based on two RCPs combined with a single GCM, the GFDL-ESM2M (see 

Chapter 2): 

• RCP 4.5 (moderate change): In this pathway the radiative forcing stabilizes before 2100 due to 

the introduction of technologies and strategies that reduce greenhouse gas emissions;  

• RCP 8.5 (largest changes): In this pathway there is a continuously increasing radiative forcing, 

and two SSPs (O’Neill et al., 2013):  

• SSP2 (in combination with RCP4.5), where  mitigation and adaptation challenges are 

intermediate, thus, it can be seen as a continuation of the current trends (medium population 

growth, economic growth and technological change); 

• SSP5 (in combination with RCP8.5), where the challenges for mitigation are high due to a lack of 

climate policy and high emissions whereas at the same time there are factors that reduce the 

mitigation capacity of the society, such as rapid population increases, large heterogeneity 

between different groups within the society, lack of political will or limited financial resources.  
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Narratives of future changes belonging to these pathways have been sketched. As described in Chapter 

2.1, quantitative data for future irrigation efficiency and irrigated area, domestic and industrial water 

demand, and limitations for groundwater abstractions were estimated to feed the PCR-GlobWB to 

produce future predictions of river discharges across Europe.   

Data allocation to FECs 

We assigned representatively the gridded hydrologic data produced by the PCR-GlobWB model to the 

104,334 Functional Elementary Catchments (FECs). At first, the centroids of the FEC polygons were 

calculated and a new shapefile was produced as shown in Figure 19(left). The share of the upstream area 

that corresponds to each FEC was matched with the FEC centroid objects. Next, a new shapefile of the 

centroids of the modelled raster cells was created adding the upstream area for each cell (see Figure 19). 

For each FEC’s centroid a buffer with a 15 km radius was created (see Figure 19) and then intersected 

with the PCR-GlobWB centroid shapefile to identify which cell centroids fall within the buffer area of each 

FEC’s centroid. This resulted into having several grid points in one FEC buffer (see Figure 19). Then, for 

each case (FEC buffer) we selected the cell centroid for which the absolute difference between the FEC’s 

upstream area and Grid cell’s upstream area was the minimum. This allowed us to minimize the number 

of cases where a grid cell with a large upstream area was wrongly assigned to a FEC with minimal 

influence from the upstream area (e.g. a small tributary). 

 

Figure 19: From left to right: Example showing a) calculated centroids of FECs polygons, b) calculated centroids of PCR-GLOBWB 
model raster cells, c) buffer zones created based upon the FEC centroids and d) the PCR-GLOBWB centroid cells that fall within 
the created buffer zones. 

Indicators of Hydrologic Alteration 

The Indicators of Hydrologic Alteration (IHA) was originally proposed by Richter et al. (1996, 1997, 1998; 

Poff et al., 1997) to assess the degree of hydrologic alteration caused by human intervention on rivers. 

The method is based on the calculation of several hydrologic parameters that characterize the intra- and 

inter-annual variability in water conditions, including the magnitude, frequency, duration, timing and rate 

of change of flows or water levels (Richter et al., 1996). Apart from their ability to reflect human-induced 

changes, the parameters have ecological relevance (Richter et al., 1997). Other researchers propose a 

smaller set of hydrologic parameters after identifying those that are redundant and inadequate. The 

calculation of the hydrologic parameters is computed with the use of a free software tool developed by 
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The Nature Conservancy, called the Indicators of Hydrologic Alteration (IHA, 2009). The parameters are 

considered as representative of crucial relationships between flow and ecological functions and are 

categorized in the major components of flow, all considered as ecologically important: low flows, high 

flows and floods. It should be mentioned that some of the hydrologic parameters calculated are inter-

correlated, resulting in considerable information redundancy (Gao et al., 2009). Moreover, due to the 

short length of time-series, some other parameters such as the ones related to floods cannot be 

considered reliable. Therefore, to increase the efficiency of the analysis at a large-scale (multiple sites 

with flow time-series) there is a need to reduce the number of indices to be used to those which are 

adequate to provide a comprehensive overall determination of the hydrologic alteration. Based on our 

experience and the analysis of the actual data we chose the most two comprehensive and reliable 

parameters to express hydrologic alteration the mean annual flow and the base flow index. 

Results 

As described before, the Indicators of Hydrologic Alteration (IHA) had been already calculated for two 

datasets of simulated daily discharges. One dataset is modelled assuming zero water abstractions and 

natural type of land uses (near-natural scenario), and the other dataset is obtained through baseline 

model runs (anthropogenic scenario) of the PCR-GlobWB model. In order to assess the deviation of the 

baseline hydrologic conditions from the near-natural scenario we have calculated the ratios between the 

values of the indicators for the anthropogenic scenario and the values of the indicators for the near-

natural scenario (anthropogenic scenario over near-natural scenario). Focusing on ratios, if the value for 

a certain indicator is 1, it means that there is no alteration between the “anthropogenic” model run and 

the “near-natural” model run. If the ratio is above 1, then the value of the hydrologic indicator for the 

anthropogenic is greater than the near-natural scenario. This was repeated four more times, each one 

for each future scenario run and alteration for each FEC is calculated as the ratio future scenario X / near-

natural scenario. 

It should be noted that the ‘pressure’ on water is not expressed consistently by above unity numbers (or 

the opposite) but depends on the nature of the indicator analysed. However, for both our indicators 

selected to show the alteration results (mean annual flow and base flow index) a ‘negative’ alteration is 

shown by ratios below unity. Thus, a below ‘1’ value for alteration in the mean annual flow shows that 

the 10-y mean annual flow of a river under a future scenario has been reduced from the natural scenario 

or the base flow index, which expresses the magnitude of base flow over the total river flow, has been 

decreased as well. The following GIS European maps at the FEC level (Figure 20 and Figure 21) show the 

alteration results for both parameters under all scenarios simulated. 
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Figure 20: Top Left: Mean Annual Flow (m3/s) of the 10-y period 2001-2010 under the natural scenario (historic climate with no 
water abstractions).Top Right: Alteration of baseline (2001-2010 with abstractions) mean annual flow from the natural 
conditions, expressed as mean annual flow (baseline) / mean annual flow (natural). Ratios below unity indicate decrease in flow 
due to abstractions, values equal to unity show no alteration and values above unity show increase from the natural conditions. 
Reduction is depicted with lighter colours and is observed mostly in parts of the Mediterranean countries. Increase in flows (ratio 
>1) is found in Central Europe, with very large parts all across the continent and especially in the North remaining unaltered with 
respect to annual river flows (ratio = 1). Middle and Bottom: Alteration of mean annual flow under four future scenarios (S). S1: 
RCP4.5 - SSP2 for 2026-2035, S2: RCP4.5 - SSP2 for 2056-2065, S3: RCP8.5 – SSP5 for 2026-2035 and S4: RCP8.5 – SSP5 for 2056-
2065. 
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Figure 21Top Left: Base Flow Index of the 10-y period 2001-2010 under the natural scenario (historic climate with no water 
abstractions). Base flow Index is defined as the 7-d minimum flow/mean annual flow of the year. Top Right: Alteration of the 
base flow index from the natural conditions, expressed as BFI (baseline) / BFI (natural). Ratios below unity indicate decrease in 
BFI due to abstractions, values equal to unity show no alteration and values above unity show increase from the natural 
conditions. Reduction is depicted on the right map with lighter colours and is observed mostly in parts of the Mediterranean 
countries. Increase in BFI (ratio >1) is found in Central Europe, with very large parts all across the continent and especially in the 
North remaining unaltered. Middle and Bottom: Alteration of BFI under four future scenarios (S). S1: RCP4.5 - SSP2 for 2026-
2035, S2: RCP4.5 - SSP2 for 2056-2065, S3: RCP8.5 – SSP5 for 2026-2035 and S4: RCP8.5 – SSP5 for 2056-2065. 
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A clear reduction of annual river flows was indicated for parts of all the Mediterranean countries (Greece, 

Turkey, Spain, France, and Italy) due to water abstractions occurring in the anthropogenic (baseline) 

scenario. However, the average flow conditions are not influenced for most of the rest of Europe, while 

for central Europe the baseline mean annual flow is even increased due to abstractions. This can only be 

interpreted by water diversions or water returns to rivers from industrial activities via point sources.  

The base flow index map also shows that alteration of rivers’ hydrology from the natural conditions due 

to the baseline anthropogenic activities is clearer in Southern Europe where agricultural water use 

predominates. Light colours of BFI alteration (<1) are observed in parts of all the Mediterranean countries 

but not much in the rest of Europe where the majority of FECs seem to remain unaltered (ratio = 1). The 

reduced significance of base flow is certainly attributed to the main water use of the Mediterranean 

countries which is agricultural. Irrigation water in these countries highly depends on groundwater 

resources, abstractions lower groundwater storage and subsequently, groundwater contribution to 

streamflow is reduced. 

By studying the middle and bottom parts of the Figures we see that future scenarios cause almost 

everywhere either a positive or negative alteration. This is expected due to the climate change that was 

included in the drivers of hydrologic alteration in contrast to the baseline case where only water 

management was responsible for the changes in the rivers‘ hydrologic regimes. 

Under both RCPs both mean annual flows and base flow indices show that in the majority of the Eastern 

and Southern Europe water availability deteriorates (ratios <1) in 2030 and 2060. In the mid-century 

scenarios (2060) Southern countries such as Greece seem to suffer even more as more areas appear with 

light colours for the mean annual flows (ratios < 1). However, studying the left and right maps of the 

middle and bottom parts of the figures we see that changes from early- to mid-century are not significant 

for the majority of Europe with the trend in hydrologic alteration being the same (either positive or 

negative alteration). This shows that under the two scenarios the changes occur rapidly in the century 

but possibly need more decades until 2100 to become more severe. 

The FEC level calculations allow investigating possible high alterations all across Europe and to this end 

the produced GIS alteration layers are valuable. We have to mention that the assessment of hydrologic 

alteration in this work was based on simulated data from a global model with modelling uncertainties 

and simplifications which are unambiguously transferred to the present results. The short length of the 

simulated flow time-series does not allow us to focus more on flood events and their hydrologic 

characteristics as small and large floods are defined in the method based on a 2-y and a 10-y interval 

respectively, certainly not in line with the 10-y length of the available data.  
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3.2  GEODATA-BASE, EFFECTS AND THRESHOLDS 
Lead: Lidija Globevnik  

Input data 

The list of candidate stressor indicators have been developed in work package 5.1 (see MARS del. 5) and 

calculated (modelled) for each main drain (river section) of an elementary functional catchment (FEC). 

The first group of variables that represent stressor indicators related to excessive nutrient concentrations 

and loads due to pollution coming from either point or diffuse sources. The second and third group of 

variables represent hydrological and morphological alterations. Hydrological alterations (water flow 

changes due abstraction, flow diversion, reservoirs, impounding, and concentrated water releases) are 

represented as ratio between present flow (altered) and semi-natural flow. Morphological alterations 

(natural riverine habitats losses, disturbed longitudinal connectivity, reduced lateral connection to 

floodplains due to levelling of the riverbed and consolidation of the banks and the bottom) are 

represented by flood plain and FEC land uses. The list of candidate stressor indicators as predicting 

variables selected for the scenario analysis tool is given in Table-A 4.  

Methods 

The final selection of stressor indicators is based on the following starting points and conditions:  

- to reduce the final number of stressor indicators as much as possible, 

- to keep a representative set of stressor indicators comprising the most complete picture of 

related drivers and pressures 

- to use the same set of stressor indicators for all river FECs in Europe 

- to define thresholds for each broad river type used in the model setting (rivers types grouped by 

three catchment size classes, three altitude classes and on group of Mediterranean rivers what 

gives ten (10) broad river types (BRT); see Table 9 

- to include those stressor indicators that can be modelled and assessed for future scenarios  

- to exclude auto correlated stressor indicators and to reduce redundancy 

- to obtain acceptable level of modelling accuracy for selected non-probabilistic regression 

analysis.  

From the list of candidate predicting variables we selected the first set of weakly redundant variables and 

those with high expectation of explanatory power. Table 10 shows ranking of variables according to their 

relative influence (%) in each broad river type for 12 variables.  

Alteration of selected hydrological parameter represent situations when current hydrological parameter 

(e.g. mean annual flow) is lower or larger than semi-natural (ratio between current and semi-natural 
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hydrological indicator is lower or larger than one (1) respectively). We analysed correlations between the 

alteration of selected hydrological parameters with five (5) ecological status to check if unilateral 

relations exist between them, since this a required condition for the development of a scenario tool. To 

satisfy this prerequisite we divided hydrological alterations into two conditions, one representing an 

increase, the other a decrease of stressor indicators compared to semi-natural state. The alteration 

indicator is then defined as difference between the calculated ratio and one (1). Negative values present 

decrease of hydrological parameter compared to semi-natural state, whereas positive values present an 

increase.  

 

Table 9: Description of broad river types for which thresholds were defined for the scenario analysis tool 

BRT Broad River Type Name Altitude 
(m.a.s.l.) 

Catchment 
size (km2) 

Geology Broad Type Rivers 
(ETC/ICM 2015) 

1 Very large rivers any > 10,000 any 1 

2 Lowland Brooks ≤ 200 ≤ 100 any 2-7 if catchment size 
≤ 100 

3 Lowland Stream and 
rivers 

≤ 200 100 – 
10,000 

any 2-7 if catchment size 
between 100 - 
10000 

4 Mountains, Siliceous, 
Brooks 

200 - 800 ≤ 100 siliceous and 
organic 

8, 9, 12 if catchment 
size ≤ 100 

5 Mountains, Siliceous, 
Streams and rivers 

200 - 800 100 – 
10,000 

siliceous and 
organic 

8, 9, 12 if catchment 
size between 100 - 
10000 

6 Mountains, Calcareous, 
Brooks 

200 - 800 ≤ 100 calcareous/mixed 
and organic 

10, 11, 13 if 
catchment size ≤ 
100 

7 Mountains, Calcareous, 
Streams and rivers 

200 - 800 100 – 
10,000 

calcareous/mixed 
and organic 

10, 11, 13 if 
catchment size 
between 100 - 
10000 

8 Highland and glacial 
rivers 

> 800 
> 200 
glacial 

< 10,000 any 14, 15, 16 

9 Mediterranean 
perennial rivers 

< 800 100 -10,000 any 17, 18 

10 Mediterranean 
temporary or very small 
rivers (brooks) 

< 800 ≤ 100 
<1,000 
(temporary) 

any 19, 20 

 

The analysis showed that both, decrease and increase of mean annual flow negatively correlates with 

ecological status deterioration. In opposite, the decrease of a base flow index negatively correlates with 

ecological status deterioration, whereas the increase does not show any positive correlation.  In the 
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further analysis we take into account only “negative” alteration of base flow index as an indicator and 

normalised its values: value “0” presents no alteration (difference between ratio and 1 is null), the value 

“1” presents 95-percentalis of all negative values in the dataset. The normalisation of negative values of 

mean annual flow alteration indicator follows the same rules as for negative base flow index alterations. 

The positive values of mean annual flow alteration indicator between null and 2.5 are normalised 

between “0” and “1”, whereas all larger than 2.5 are set to “1”.       

Results 

By applying multivariate analysis we calculated the explanatory power of stressor indicators on the 

reported ecological state. As the scenario analysis tool aims to deliver results on European wide 

conditions (including EFTA and other neighbouring countries) we were limited to input data available for 

the entire modelling extent. This for example made it necessary referring morphological stressor 

indicators to the land-use in a FEC and not only to such in riparian areas, as e.g. Copernicus data was not 

available for all FECs. The explanatory power of stressor indicators on land uses (lu_urb, lu_for, lu_agr), 

nutrients (nu_din, nu_tp) and two hydrological alterations, mean annual flow alteration (hy_maf) and 

base flow index (hy_basef) have the largest explanatory power, either to explain ecological status of all 

rivers in one data set (column “all”) or averaged by broad river types (last column, Table 10).    

Table 10: Variables predicting general ecological state with the highest explanatory power (%).   

  all BRT 
1 

BRT 
2 

BRT 
3 

BRT 
4 

BRT 
5 

BRT 
6 

BRT 
7 

BRT 
8 

BRT 
9 

BRT 
10 

average 
by BRT 

nu_din 16.6 18 12.7 17.1 17 19.3 19.4 20 11.1 12.1 8.1 15.5 

nu_tp 12.3 18.2 8.5 11.1 8.1 13.8 8.5 13 16.2 16.7 9.1 12.3 

hy_basef 11.4 9.6 12.2 12.8 7.7 13.5 8.1 12.2 12.1 11.4 7.1 10.7 

lu_urb 13.5 5.8 21.6 9.5 15.5 5.5 14.2 9.1 12.3 6.3 16.2 11.6 

hy_maf 10.6 10.7 9.3 11.7 5.7 8.8 3.3 11.4 10.2 11.2 4.3 8.7 

lu_for 6.7 6.9 7.2 6.4 12.5 8.6 21.6 7.3 8.1 7 4.2 9.0 

lu_agr 7.1 7.9 8.7 8.1 4.6 5 6.4 6.8 6.7 7.1 34.9 9.6 

hy_lp 3.6 4.3 3 3.4 1.7 3 3 3 3.6 5.9 2.9 3.4 

hy_hp 2.4 8.5 2.5 2.8 2 2.7 4 4.3 1 2.5 1.1 3.1 

hy_ld 2.8 6.3 2.3 2.6 2.5 2.8 1.2 2.7 3.5 5 2.9 3.2 

hy_hd 1.6 3.9 1.8 2.2 2.2 1.6 3.1 1.3 0.8 2.2 0.4 2.0 

Legend: nu_din: concentration of dissolved nitrogen in water; nu_tp: total phosphorus concentration in water; hy_basef: alteration of base flow 
index (ratio between present base flow index and semi-natural base flow index); lu_f_urb: share of urban land use in FEC; hy_maf: alteration of 
mean annual flow (ratio between present mean annual flow and semi-natural mean annual flow); lu_f_for: share of forest in FEC, lu_f_agr: share 
of agricultural land use in FEC; hy_lp: alteration of low pulse threshold; hy_hp: alteration of high pulse threshold; hy_ld: alteration of extreme 
low flow duration; hy_hd: alteration of high flow duration;  

 
Based on their explanatory power we selected a final set of six (6) variables for which we define 

thresholds between good or high ecological status and less than good ecological status: 
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nu_din:    nitrate, nitrite + ammonium concentration in water (mg/l N) 

nu_tp:    total phosphorus concentration in water (mg/l P) 

hy_basef:   increased base flow index – positive, normalised (%) 

hy_maf:    mean annual flow alterations – absolute normalised value (%) 

lu_urb:   share of urban area in FEC (%) 

lu_agr:   share of agricultural area in FEC (%)  

 

Table 11:  Thresholds for six stressor indicators by broad river types derived with classifier algorithm C4.5.   

 BRT 1 BRT 2 BRT 3 BRT 4 BRT 5 
nu_din 2.0 0.42 2.26 2.43 2.8 
nu_tp 0.10 0.03 0.34 0.12 0.04 
lu_urb 5.17 6.24 1.78 1.9 1.1 
lu_agr 5.29 1.9 24.8 16.2 16.2 
hy_maf 12.2 0.01 15.5 3.2 0.6 
hy_basef 5.1 0.02 3.1 20 1.2 
 BRT 6 BRT 7 BRT 8 BRT 9 BRT 10 
nu_din 2.0 3.1 2.07 2.67 2.76 
nu_tp 0.05 0.14 0.14 0.12 0.12 
lu_urb 6.9 3.3 2.0 3.76 13.4 
lu_agr 27.8 37.1 15.5 12.1 24.6 
hy_maf 20 1.8 20 3.8 5.9 
hy_basef 4.6 2.2 4.1 8.3 6.3 

 

Thresholds for selected six variables are defined using classification approach of data mining with 

algorithm C4.5 (Quinlan, 1993). It is a statistic classifier algorithm that uses info gain ratio for variable 

(feature) selection and to construct the decision tree and is widely used because of its quick classification 

and high precision (Sharma et al., 2013). Evaluation of results (validation) is done with cross validation 

methods (10 folds), where learning is first done on test data (randomly chosen 10% of instances). To 

avoid over fitting the supervised class balancing with weightings method (re-weighting the instances in 

the data so that each class has the same total weight) and validated with SMOTE method (Synthetic 

Minority Oversampling Technique according to Nitesh et al., 2002). To capture important structural 

information and to decrease error as much as possible, we used pruning (removal of decision nodes that 

do not provide any significant additional information). The confidence factor used for pruning (smaller 

values incur more pruning) is 0.25 and or 0.05. The minimum number of instances per node (leaf) varied 

between 10 and 100.  

Thresholds are given in Table 11. The classification accuracy and other parameters used in classification 

(selected classification scheme parameters) are given in Table 12. 
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Table 12: Classification accuracy and selected classification scheme parameters used to derive thresholds for selected pressure 
variables.  

 BRT 1 BRT 2 BRT 3 BRT 4 BRT 5 

Number of instances 1397 5471 11259 3458 4372 

Confidence factor  0.25 0.25 0.25 0.25 0.25 
Pruning*  50 50 100 50 50 
Correctly classified (%) 72.7 60.6 70.6 66.9 69.9 
Kappa statistics 0.44 0.22 0.20 0.34 0.40 
 BRT 6 BRT 7 BRT 8 BRT 9 BRT 10 
Number of instances 2240 2576 2761 3486 3170 
Confidence factor  0.25 0.25 0.25 0.25 0.25 
Pruning*  50 25 50 50 50 
Correctly classified (%) 64.9 64.4 63.5 65.0 66.4 
Kappa statistics 0.40 0.29 0.27  0.30 0.33 

* Number of minimum instances in a leaf 

 

The highest classification accuracy is obtained for datasets representing BRT 1 (large rivers), but 

accuracies for the other types do not fall below 60%. The prediction performance of classifiers (measured 

by Kappa statistics (inter-rater agreement) is moderate for majority of broad river types.   
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4. IMPLEMENTATION OF THE SCENARIO ANALYSIS TOOL 

Lead: Markus Venohr, Judith Mahnkopf, Andreas Gericke 

General approach 

The joint application of the above described models (Figure 22) and the consistent analysis and 

assessment of the results led to the identification and consideration of in total six stressor indicators 

(Table 13) and thresholds determining whether they have a significant impact on the ecological status. 

As a last step for the development of the SAT, the combination of active or inactive stressor indicators 

(see Chapter 1) had to be translated into the probability to reach a good ecological status. This was done 

using a Bayesian Belief Network trained for current conditions. The assessment of changing probabilities 

under future conditions was eventually done by feeding changed stressor indicator values into the 

trained Bayesian Belief Networks.  The technical steps are described in more detail below. 

 

 

Figure 22: Principle workflow and data exchange for calibrating and learning the SAT-approach and for the application at scenario 
conditions. 

 

Estimating the probability to reach a good ecological status 

As stated before the impact assessment of stressor indicators was derived on the basis of the reported 

ecological state. Here we distinguished whether a good or high status is reached or not. These two 

conditions were compared to the distribution and combination of the six active or inactive stressor 
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indicators (Table 13). A stressor is considered active if the threshold is exceeded, and inactive if the value 

remains below the threshold. These stressor indicators were shown to explain the major share or the 

reported ecological status (see Chapter 3.2, Table 15).  

 

Table 13: List of considered stressor indicators. 

Name Description Units 

nu_din Concentration of dissolved inorganic nitrogen (DIN) in main river at outlet 
of sub-catchment by MONERIS 

mg/l 

nu_tp Concentration of total phosphorus (TP) in main river at outlet of a sub-
catchment modelled by MONERIS 

mg/l 

lu_urb Area share of urban area per sub-catchment derived from land-use maps 
(CORINE & GlobCorine) 

% 

lu_agr Area share of urban area per sub-catchment derived from land-use maps 
(CORINE & GlobCorine) 

% 

hy_maf Change of mean annual flow (maf) between near natural conditions and 
current/scenario conditions.  

% 

hy_basef Change of base flow index (basef) between near natural conditions and 
current/scenario conditions. Base flow index is the ratio between 7-day 
minimum flow divided by mean annual flow. Only positive changes 
(increasing base flow indices were considered)  

% 

 

As described above the six stressor indicators represent three different categories of stressors: 

nu_din and nu_tp: the nutrient concentration represent an integral of the entire catchment. Beyond the 

land-use and land-use intensities (population density, N surplus, extent of waste water treatment) it is 

also majorly impacted by water availability and, to a lesser extent, by the size and distribution of larger 

lakes for which increased retention rates can be assumed. 

lu_urb and lu_agr: These shares of land-use-class-areas on the FEC-area is an indicator for the local 

hydro-morphological alteration. It strictly only represent the local conditions in a single FEC. Any hydro-

morphological alterations in up-stream catchments (Hinterland FECs) are not reflected by our analysis. 

During the selection process we tested these two hydro-morphological alteration stressors in two 

variants: a) share of urban area on the riparian area (according to Copernicus, 2015) along the main river 

of a FEC and b) share of urban area on the total FEC area. Our analysis showed that the explanatory 

strength of the two variants does not significantly change. As Copernicus data is not available for the 

entire MARS model extent, we decided to consider the area share on the total FEC area. 

hy_maf and hy_basef: These stressor reflecting hydrological alterations are derived from GlobWB results 

for two different conditions: a) daily values current conditions between 2001 and 2010 and b) daily values 
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derived from current climatic conditions but assuming a complete absence of water abstractions and 

reservoirs. The latter version was assumed to represent near natural conditions. For both conditions the 

IHA software was applied (see Chapter 3.1) and more than 25 hydrological parameters were derived. By 

comparing the parameter of both conditions the stressor indicators were generated. Throughout the 

analysis two most explanatory stressor indicators were identified and selected for the final tool 

development. 

All six stressor indicators more or less strictly reflect an alteration of natural conditions. For hy_maf and 

hy_basef the alteration has directly be derived while for lu_urb and lu_agr alteration is implemented as 

any presence of the two anthropogenic induced land-use classes implement a change from natural 

conditions. For nutrient concentrations (nu_din and nu_tp) the alteration aspect is less clear. However, 

nutrient concentrations under near natural conditions were much lower than present concentrations and 

did, according to Gadegast et al. (2014) and Hirt et al. (2013), vary much less between river basins than 

under current conditions. Here, current, anthropogenic altered concentrations in FECs are commonly bias 

by a much lower and less variable near natural concentration. 

Hydro-bio-geo-chemical conditions vary considerably across Europe. Accordingly, thresholds were 

derived separately for different water body types. Our statistical approaches - thresholds but also the 

later described training of the Bayesian Belief Network – required a data set containing a representative 

combination of stressor indicator and status conditions. A larger sub-set of FECs for each water body type 

was also required to ensure long gradients of values. With this background we used a set of 10 different 

aggregated broad water body types (BRT, ETC/ICM 2015) (Figure-A 1) to conduct the analysis. 

By applying regression tree analysis, thresholds for each of the six stressor indicators were determined 

and tested with cross validation methods (Table 14). The derived thresholds have to be interpreted 

carefully and cannot as such directly be seen as thresholds outside the here derived context. For e.g. RT2 

(lowland brooks) the lowest share of FECs with a good or high ecological status was reported. Lowland 

areas are often used for intensive agricultural productions, so in many FECs of RT2 stressor indicators like 

lu_agr, nu_din or nu_tp are often on a high level. Consequently, there is a high probability for a multiple 

stressors situation co-prohibiting a good ecological status. This further means that only at a very low 

value of an individual stressor indicator, the statistical probability to reach a good ecological status can 

be presumed. In turn, lu_urb is often very on low level in RT2, as here, larger cities are less common. 

Consequently, only very high shares of urban areas lead to a singular impact on the ecological status, 

which results in a high threshold. In spite of this peculiar interpretation of the thresholds, the approach 

is able to describe co-limitations and multiple stressor conditions, as will be shown in the following. 

http://icm.eionet.europa.eu/ETC_Reports/FreshwaterEcosystemAssessmentReport_201509
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Table 14: Broad river type specific thresholds for the six considered stressor indicators. RT1- very large rivers, RT2 – Lowland 
brooks, RT3 – Lowland streams and rivers, RT4 – Mountains, siliceous, brooks, RT5 – mountains, siliceous, streams and rivers, 
RT6 – mountains, calcareous, brooks, RT7 – Mountainous, calcareous, stream and rivers, RT8 – Highland and glacial rivers, RT9 
– Mediterranean perennial rivers, RT10 – Mediterranean temporary or very small rivers (brooks). 

BRT lu_urb 
in % 

lu_agr  
in % 

hy_maf  
in % 

hy_basef  
in % 

nu_din  
in mg/l 

nu_tp  
in mg/l 

1 5.17 5.29 12.20 5.10 2.00 0.10 

2 6.24 1.9 0.01 0.02 0.42 0.03 

3 1.78 24.8 15.50 3.10 2.26 0.34 

4 1.9 16.2 3.20 20.00 2.43 0.12 

5 1.1 16.2 0.60 1.20 2.80 0.04 

6 6.9 27.8 20.00 4.60 2.00 0.05 

7 3.3 37.1 1.80 2.20 3.10 0.14 

8 2.0 15.5 20.00 4.10 2.07 0.14 

9 3.76 12.1 3.80 8.30 2.67 0.12 

10 13.4 24.6 5.90 6.30 2.76 0.12 

 

The BBNs were developed using the software Genie (licensed from the University of Pittsburgh), in a 

simple parallel structure without any co-influences between the stressor indicators (Figure 23). This was 

possible as statistical analysis revealed no or only very weak correlations between the stressor indicators 

(Chapter 3.2).  

Each of the 10 BRT related datasets containing information on the six stressor indictors and the reported 

ecological state per FEC was randomly split into 4 subsets of equal size. Two subsets were merged to train 

and the remaining two were used to validate the BBNs. The combination of subsets was iterated in all 

possible combinations allowing 4 training-validation cycles. This process showed for all BRT types that 

the share of correctly predicted ecological status and the explanatory strength of the stressor indicators 

did not change or depend on the combination of subsets. This allowed finally training the BBN with the 

complete BRT data set.  
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Figure 23: Structure of the Bayesian Belief Network to estimate the probability to reach a good ecological status, shown for the 
example of broad river type “RT8-Highland and glacial rivers”, using the Software package GENIE. 

 

The trained BBNs using the data subset in mean predicted 69 % of the reported ecological status correctly. 

The lowest and highest share of correctly predicted ecological status was 61 % (RT4) and 81 % (RT1). For 

all other RTs these values range between 65% and 70% (Figure-A 2).  

 

Table 15: Share of FECs with allocated river type, ecological status information and the share of FEC with a good or high reported 
status per broad river type (BRT). 1) Values in brackets describe the percentage share on all 104,300 FECs of the entire MARS 
extent. 2) Values in brackets describe the percentage share of all FECs allocated to the respective BRT. 3) Values in brackets describe 
the percentage share on all FEC with reported status per BRT. 

BRT Number of FECs  

with allocated river type1) 

FECs with  

reported status2) 

FECs with good  

or high status3) 

1 4045 (4) 2830 (70) 599 (21) 

2 16083 (15) 6733 (42) 2147 (32) 

3 23065 (22) 15695 (68) 4484 (29) 

4 8632 (8) 3721 (43) 1629 (44) 

5 7958 (8) 5400 (68) 1947 (36) 

6 4976 (5) 2438 (49) 1169 (48) 

7 4830 (5) 3327 (69) 1073 (32) 

8 11840 (11) 4226 (36) 2744 (65) 

9 7017 (7) 4459 (64) 1705 (38) 

10 11852 (11) 3409 (29) 1722 (51) 

All 100298 (96) 52238 (52) 19219 (37) 
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The explanatory share of each stressor indicator on the ecological status was tested by comparing the 

mean euclidean influence of strength calculated by GENIE. This comparison showed a trend of nu_din, 

nu_tp and hy_basef being the most explanatory stressors for RT1-RT5, whereas lu_urb and lu_agr tend 

to be stronger explanatory stressors for RT6-RT10. In none in the river types hy_maf was identified as 

strongest indicator. However, in general the explanatory share of all stressor indicators was quite 

balanced in all RT, and none of the stressor indicators completely failed in any of the river types. This 

indicates multi-stressor situations caused or explained by the selected stressor indicators. 

 

Table 16: Mean euclidean strength of influence derived using software „Genie“ 

BRT lu_urb lu_agr hy_maf hy_basef nu_din nu_tp 

1 13.42 22.18 21.80 31.58 30.60 22.99 

2 21.97 19.78 18.70 16.77 22.78 22.09 

3 14.03 16.30 11.58 16.91 14.57 20.60 

4 32.0 23.91 24.73 25.66 27.80 14.84 

5 16.70 12.23 14.40 14.34 24.41 23.13 

6 29.41 21.63 19.17 22.25 22.19 13.61 

7 28.12 25.72 21.65 17.72 22.00 20.32 

8 25.99 19.98 20.60 21.41 19.70 24.78 

9 23.93 29.79 18.22 23.33 19.70 23.81 

10 24.59 28.35 19.23 18.25 14.66 18.03 

 

From six stressors being active or inactive, 64 stressor combinations result. All 64 combinations were 

found for the FECs in the MARS modelling extent. However, with a highly skewed distribution, the 10 

most frequent combinations represent 55 % of all FECs (Figure 24). Interestingly, the two most frequent 

combinations were found for combinations where only hy_maf is active and no stressor is active (Table 

17).  This is surprising, as hy_maf is the stressor indicator with the lowest strength of influence, but it also 

shows that a ubiquitous presence of a stressor indicator does not equal its potential to impact the 

ecological status. In total the combinations of 1, 2 or 3 jointly acting stressor indicators represent the 

major share of all FECs. This share significantly decreases for 5 or 6 jointly acting stressors (Figure 24).  
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Figure 24: Share of individual stressor indicator combinations per FEC on all FECs in the MARS modelling extent (left). Share of 
FECs with the same number of active stressor indicators. Both figures refer to current conditions 2001-2010. 

 

Table 17: Ten most frequent stressor indicator combination in the MARS modelling extent. X = active, - = inactive. 

No. of 

FECs 

Share on  

all FECs in % 

lu_urb lu_agr hy_maf hy_basef nu_din nu_tp 

2624 2.6 - x x - - x 

3354 3.3 x X x - - - 

4014 4.0 - X - - X x 

4017 4.0 - - x x - - 

4548 4.5 - X - - - - 

4716 4.7 - X x x x X 

5959 5.9 - X x - - - 

7546 7.5 - X x - x X 

9470 9.4 - - - - - - 

11392 11.4 - - x - - - 
 

Table 15 shows the share of FECs for which a good or high ecological status was reported. The trained 

Bayesian Belief Network provides a very good agreement between the reported status and the mean 

probability to reach a good or high status ecological (“GoodOrBetter”) calculated for the FECs of a BRT 

(Figure 25).  

For each stressor combination the software “Genie” compares the share of GoodOrBetter or 

ModeratOrWorse conditions to derive the probabilities. The software Genie only allocates probabilities 

higher than 50% to a GoodOrBetter ecological status. In particular for BRTs with a low share of FECs with 

a good or high reported status, the predicted share of GoodOrBetter conditions tends to be 

underrepresented. Here, only for very specific stressor indicator combinations, likely with few active 

stressors, a GoodOrBetter status will be dominating. As a consequence for such BRTs the predicted share 

of FECs with a GoodorBetter status will underestimate the reported share. This aspect is important for 
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the interpretation of the predicted probability to reach a good ecological status and suggests only 

comparing relative changes of the percentage probabilities. 

 

Figure 25: Probability to reach a good ecological status derived from the trained Bayesian Belief Network for the ten different 
broad River Types 

 

Effects of considered scenarios and management options 

The SAT compares current conditions calculated for the years 2001-2010 to the two future scenarios, 

described as MARS story lines shown in Table 18, for the two periods 2026-2035 and 2056-2065. The 

calculations of the scenarios are split-up into two principle components: a) exogenous factors (climate, 

demography, and land-use changes) and b) endogenous factors (e.g. mitigation measures, planned and 

conducted on local or country level). Consequently, changes in the selected six stressor indicators and in 

the probability to reach a good or better ecological status are calculated separately for the exogenous 

factors for both story lines and periods. The determined changes in active and inactive stressors as well 

as the resulting changes to reach a good ecological status can be visualised and assessed in the SAT. In 

the following a concluding overview on the general changes ( 

Table 18) and some exemplary results on changing effects are given. 

The mean changes in precipitation and run-off in the entire modelling extent are with less than 10 % 

relatively small. However a strong spatial pattern (varying throughout the different climate scenarios) 

can be found, in general indicating, as shown for Storyline 2 in Figure 26, decreasing precipitation in 

southern Europe and increasing precipitating in central and northern Europe. 
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Land-use changes are also highly skewed. Whereas the European wide mean change in agricultural land 

is almost negligible (Table 18), regionally considerable changes of more than ±25 % were presumed. Here, 

a general pattern is less clear, but overall an decrease in agricultural areas for central Europe, a slight 

increase in southern Europe and only some local increases in northern Europe were derived (Figure 27). 

 

Table 18: Parameters and mean changes considered for the scenario modelling. 

 Storyline 1: Techno world Storyline2: Consensus world 

Modelling period 2026-2035 and 2056-2065 

Climate/global 

change scenario 
RCP8.5, SSP5 RCP4.5, SSP2 

Precipitation 

change in % 

2030: mean 8 

2060: mean: 9 

2030: mean 9 

2060: mean: 8 

Reservoirs Increase of reservoir area by 0.084 % of land area 

Water 

abstraction 

2030: 2.1 % 

2060: 2.2% 

2030: 0.7 % 

2060: 2.1 % 

Land-use change 

in % 

AGR: 2030: -2, 2060: -3 

URB:  2030: 1, 2060: 2 

AGR: 2030: -3, 2060: -3 

URB:  2030: 1, 2060: 1 

Population 

change in % 

2030: mean: 10 

2060: mean: 13 

2030: mean: 6 

2060: mean: 9 

Sewage collection 
2030: 2010+10 %-points 

2060: 2010+20 %-points 

2030: 2010+10%-points+10 % of diff. 

2060: 2010+20%-points+20 % of diff. 

Sewage 

treatment 

Current run-off concentrations of treatment plants discharges are reduced by 25 %, 

unchanged domestic water consumption 

 

The assumptions for Storyline 2 for an increased sewage collection shows in particular in rural areas an 

apparent effect and increasing collection rates. Here collection rates may have increased at maximum 

from current 0 % to 36 %. However, this effect does not necessarily have  a strong effect on the nutrient 

emission and concentrations, as in sparsely populated area the increased collection rate only effects a 

very limited number of households.   

In addition to the changes describe above and in  

Table 18, three mitigation measures were applied. Whereas the reduction of N-surplus clearly aims at 

the reduction of Din concentrations I surface waters, the other to mitigation measures are more relevant 

for changes in TP concentrations. The proposed mitigation measure to dry and distribute manure leads 

from current mean European wide N-surplus of 40 kg ha-1yr-1 to a reduction by 40% to a resulting mean 

N surplus of 24 kg ha-1yr-1.  As shown in Figure 28, the reduction again shows a distinct spatial pattern, 

causing the strongest reduction in areas with currently highest N-surplus. 



  
Deliverable 7.2-1 – MARS Suite of Tools II:  
Scenario Analysis Tool (SAT) 

 

Page 69/93 

The resulting changes in DIN concentrations based on global changes and in addition considering the 

mitigation measures is shown in Figure 29 and Figure 30. In general, increasing precipitation and run-off, 

decreasing agricultural areas and an improved sewage collection and treatment already causes a general 

reduction of high nutrient concentrations in favour of an increase in lower concentrations for TN and TP. 

The additional application of the mitigation measures fosters this development, in particular for nitrogen.  

A question, the SAT aims to answer is, how these changes together effect the probability to reach a good 

ecological status. As the changes of the other considered stressor indicators are more ambiguous in their 

spatial distribution, direction and extent (see Chapters 3.1 and 3.2) the spatial pattern of active stressor 

and the joint impact on the ecological status more complex. The interplay of scenario changes is given in 

Figure 31 on the example of Storyline 2 and for the period 2026-2035. Changed stressor indicators cause 

increasing probabilities to reach a good ecological status in particular for central Europe, whereas 

probabilities decrease for southern Europe. When additionally applying the mitigation measures, no 

further improvement can be found in central Europe, but in many regions of southern Europe 

probabilities. In southern Europe a further improvement will considerably decrease WWTP effluents and 

negative effects from an increase in agricultural areas is partly compensated by the implementation of 

buffer strips. In central Europe the decrease of DIN concentrations does not led to a further increase of 

probabilities. Three possible causes seem to come together here: 1) other stressors are still active, 2) N-

surplus changes are not sufficient reduce nu_din below threshold, 3) the stressor indicator combination 

has not been sufficiently represented for training the BBN. In particular the last aspect is crucial for the 

interpretation of the results and requires further research. 
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Figure 26: a) mean annual precipitation in 2001-2010, b) difference between the mean annual precipitation for Storyline 2 in 
2026-2035 and the mean annual precipitation in 2001-2010. 

 

Figure 27: a) Current percentage share of agricultural areas on the FEC area, and b) percentage changes in agricultural areas 
between current conditions and Storyline 2 in 2026-2035. 

 

Figure 28: N-surplus on agricultural areas for a) the year 2009 and under b) assumption of applied mitigation measures in kg ha -

1 yr-1. 
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Figure 29: Change of the DIN concentration at FEC outlet for Storyline 1, 2026-2035, with and without mitigation measures, 
compared to the mean concentration at current conditions, 2001-2010. 

 

Figure 30: Change of the TP concentration at FEC outlet for Storyline 1, 2026-2035, with and without mitigation measures, 
compared to the mean concentration at current conditions, 2001-2010. 
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Figure 31: Probability to reach a good ecological status for a) current conditions (2001-2010), b) Storyline 2, 2026-2035, no 
mitigation measures, and c) Storyline 2, 2026-2035, with mitigation measures. Maps e) and f) show the difference of maps b) 
minus a) and c) minus a), respectively. Diagram d) displays the calculated probabilities to reach a good ecological state derived 
from a), b), and c). 
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Technical set-up 

In order to fulfil the EC funding requirements, the scenario analysis tool was developed as open-source 

software which includes its dependencies. All material published in the SAT are published under a GNU 

GPLv3 unless otherwise stated (see https://choosealicense.com/licenses/gpl-3.0/ for details).  

The SAT is an interactive web app realised in the programming language R (https://www.r-project.org/) 

with the Shiny library (http://shiny.rstudio.com). The tool is expected to work with common operating 

systems and browsers. The details on diagrams, content, and results are described in the next section. 

The user interface contains three core elements, each based on an individual technical approach:  

a) Map views 

Maps and legends are hosted on a GeoServer (http://geoserver.igb-berlin.de/geoserver/web/). 

The Java-based GeoServer server software (http://geoserver.org/) allows users (not the SAT 

user) to create, edit, and share spatial data. This open-source software supports the Web Map 

Service (WMS) standard to provide maps in a variety of output formats. 

The map visualisation and interaction in the SAT is realized with Leaflet (http://leafletjs.com/), 

an open-source JavaScript library to compose interactive maps. It displays the spatial data and 

enables the user to zoom and pan the map. According to the current user settings and extent, 

the SAT downloads the required geometry, styles, and legend from the GeoServer using the WMS 

capabilities integrated in Leaflet (except for scenario changes). 

b) Data analysis and plots 

The data analysis and handling in R relies on these packages/libraries (https://cran.r-

project.org/web/packages/): 

o data.table: fast data storage and access 

o rgdal: reading geo-spatial data 

o ggplot2: creating plots 

After reading the spatial and FEC data as well as the thresholds from different files, the SAT stores 

all data in memory and populates the selection controls for the user interface. User actions 

trigger events in Shiny which are used to change the current data subset and to update the map 

view and plot accordingly. 

c) Hierarchical multi stress analysis 

We adapted the KRONA tool (Ondov et al. 2011), developed to visualize and analyse hierarchies 

and abundances in meta-genomic data.  

The interactive visualisation of multi-stressor conditions in a transparent and easy-to-read way 

was a major challenge. In order to allow a hierarchical ordering of the extent and combination in 

https://choosealicense.com/licenses/gpl-3.0/
https://www.r-project.org/
http://shiny.rstudio.com/
http://geoserver.igb-berlin.de/geoserver/web/
http://geoserver.org/
http://leafletjs.com/
https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
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different spatial sub-units, we decided to use the KRONA widget 

(https://github.com/marbl/Krona/wiki), which was originally used in meta-genomics. With 

KRONA, hierarchical data can be explored as zoomable pie charts. This is realised by a variant of 

radial, space-filling displays and interactive polar-coordinate zooming. The HTML5 and JavaScript 

implementation enables fully interactive charts in any modern Web browser. For embedding the 

KRONA widget in the SAT, the interface between JavaScript, HTML and R-shiny required various 

adjustments.  

 

How to use 

The SAT can be accessed via the freshwater information platform (FIP: www.freshwaterplatform.eu) 

under Tool/MARS SCENARIO TOOL, using all commonly available browsers.  

When starting the SAT a small box in the bottom-right corner informs you about the progress in loading 

maps and background information, the loading can take 10 to 30 seconds depending on the transfer rate 

of the internet connection. The start window is shown in Figure x, the main elements and their function 

are described below: 

 

Figure 32: Start window after initial start of the SAT. 

 

https://github.com/marbl/Krona/wiki
http://www.freshwaterplatform.eu/
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1) The tool was developed in the context of the FP7 EU-Project MARS. Clicking on the logo will lead 

you to the project web-site giving more information on the overall goals and results of the 

project. 

2) This button will open the navigation menu. Further details are given in Figure 2. 

3) Clicking on this button will open an URL containing all settings of your current view of the SAT. 

This URL can be used to share a specific result with colleagues or to save it for a later continuation 

of the work. 

4) Main map view. Here all maps are visualised. 

5) By pressing “+” or “-“, the map will zoom-in and zoom-out. This can also be done by using your 

mouse wheel, CTRL “+” or CTRL “-“. You can pan the map by clicking and holding the left mouse 

button. 

6) You can open the Results panel by clicking on the “˅” button. You can pan the Results panel by 

clicking and holding the left mouse button. Further details are given in Figure qq. 

7) Short information on the settings in the navigation menu. 

After clicking on the 3 bars above the map (2), the navigation menu appears and offers the user many 

selection and setting options described below: 

 

Figure 33: The navigation menu. 

1) Base-map view enables you to have a look on 4 different datasets, 

each visualized in a map, which are the basis of scenario analysis. 

2) The default selection of the scenario analysis tool is the single-

stressor view. By selecting a single stressor in dropdown-menu (5) 

the respective map and results are depicted. 

3) Click on Multi-stressor view and choose between »Map«, that leads 

you to the visualized number of active stressors and the probability 

of good ecological status, or »Explorer«, that opens the Krona tool 

which presents you the data in multi-layered pie charts (see Figure 

31). You can use the multi-stressor »map« view in the same way 

like the single-stressor view. 

4) The »Info« menu option opens an information page on the tool. 

Here you can access a manual and background information on the 

SAT. 
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5) The »Info« menu option opens an information page on the tool. 

Here you can access a manual and background information on the 

SAT. 

6) This dropdown menu allows you to select one of 6 different stressor indicators. 

7) By selecting a »map mode« you can switch two different visualization types. »Range of values« 

is the default setting that shows you the selected stressor indicator in its corresponding units. In 

contrast to this you can switch to »stressor status« that just shows you FECs in which the selected 

stressor is active or not active depending on its defined threshold. 

8) »Scenario and period« allow you to decide whether you want to depict the selected stressor 

indicator in current conditions based on the year 2010 or in the two scenarios consensus world 

and techno world in the years 2030 and 2060. 

9) By clicking on »Spatial aggregation units« you can change how the results are displayed - on a 

geographical or political level. MARS river basins or countries are available for selection. 

10) Here you can choose a river basin / country by using the dropdown list or typing in the name of 

the basin / county. 

11) If you choose river basins as spatial aggregation unit (8) and select a river basin (9) you can zoom 

further in river sub-basins by using the dropdown list or typing in the name of the sub-basin. 

Single- and multi-stressor »map« view allows you to get detailed information about the data that is 

depicted in the map. To open the Results panel, click on the arrow to unfold it. 

 

Figure 34: The results panel. 

1) The first part of the Results panel summarizes your 

current selection and describes the plot below 

including the number of analysed FECs (MARS 

extent). 

2) In the second part you receive information about the 

threshold / mean threshold of all broad river types 

that must not be exceeded in order to achieve a good 

ecological status. 

3) The plot in the third part of the results panel displays 

the frequency of FECs and its value ranges in a 

column diagram. The vertical line in the plot shows 

the threshold and the dotted vertical line shows the 

mean threshold of all broad river types. 
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4) You can select one of 10 broad river types of your current selection to have a closer look on this 

broad river type. By selecting a broad river type, the threshold and the plot are adjusted. 

 

Multi-stressor view »Explorer« / Krona tool 

The Krona tool (see Ondov et al. 2011) allows hierarchical data to be explored with zooming in multi-

layered pie charts. Beside the »map« view it is the second possibility to explore MARS river basins or 

countries and their proportion of stressor indicators under current or future conditions. 

 
Figure 31: The Multi-stressor view »Explorer« / Krona tool. 

1) The multi-layered pie-charts are created by clicking on »Generate view«. This requires that 

you select previously the scenario and period, the primary aggregation unit and a specific 

MARS river basin or country. 

2) The Krona tool was developed by Ondov et al. 2011 and is available open source. By clicking 

on the logo you will be forwarded to the tool website and source code. 

3) The navigation arrows allow you to undo a selection   or to restore a selection  inside 

the tool. 

4) Here you can search for specific words or terms used in the tool. Wedges that contain hidden 

matches will also be highlighted. 

5) The »x« button deletes your search. 

6) By clicking on a wedge inside of the pie charts, you can unfold your selected wedge. The same 

applies for double-clicking on a wedge. 
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7) Some MARS river basins or countries include too many wedges for a complete labelling. In 

this case a supporting legend appears that you can hide by clicking on the »x« button. 

8) Main Krona view. Here all stressors are depicted in multi-layered pie charts. You can unfold 

wedges on different levels by double-clicking on a wedge. To zoom in on a wedge briefly and 

then return to the current view, click and hold on a wedge. 

9) You can reduce the number of displayed layer by clicking on the »-» button or increase the 

maximum depth by clicking on the »+« button. 

10) Further customise your view by change the font size. Smaller font sizes (- button) will be 

harder to read than larger font sizes (+ button), but will allow smaller wedges to be shown 

and can reduce label crowding. 

11) Improve the legibility by changing the size of the pie charts.  

12) You can use this checkbox to simplify the chart by collapsing "redundant" wedges that are 

entirely composed of another wedge. 

13) Click on the Snapshot button to open a new window with the current view rendered in SVG 

(Scalable Vector Graphics) format. 

14) This shows a link to the current view that can be copied for bookmarking or sharing. 

15) The Help button opens the developers' general manual of the Krona tool in a new tab / 

window. 
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5. GENERAL CONCLUSIONS 

Lead: Markus Venohr, Lidija Globevnik, Yiannis Panagopoulos, Sebastian Birk 
 

Data and models 

1) A first European wide (EU, EFTA states and neighbouring countries) joint model application on a 

spatial resolution of 58 km² (ECRINS FECs, average size) and for monthly time steps build the core 

of the developed scenario analysis tool. 

2) Modelling of near natural and current run-off conditions allowed deriving the alteration of 

hydrological parameters. 

3) Current condition (2001 – 2010), two storylines (based on RCP8.5, SSP5 and RCP4.5, SSP2) and 

two future periods (2026 – 2035, 2056 – 2065) constitute reference conditions for the scenario 

frameworks to assess the spatial distribution, extent and combination of stressor indicators on 

FEC level. 

4) Additional to the future scenario frameworks a set of three mitigations measures (N-surplus 

reduction, riparian buffer strips, and improve waste water treatment) were applied and assessed. 

5) A candidate list of more than 25 stressor indicators (Table-A 4) were tested regarding their 

explanatory power to describe the ecological status reported by the EU countries for the 2nd EU 

Water Framework Directive management cycle. 

6) Six selected stressor indicators (DIN and TP concentration in rivers, share of urban and 

agricultural land, mean annual flow alteration and base flow alteration) were shown to explain 

the majority of the reported ecological status. 

7) For all selected stressor indicators river type-specific thresholds identifying when the ecological 

status most probably deteriorates from good to moderate were derived, using machine learning 

techniques. 

8) Bayesian Belief Networks (BBN) were trained to estimate the probability to reach good ecological 

status under given river type-specific stressor combinations. 

9) An online browser-based tool was developed to visualise and analyse all stressor conditions and 

their probabilities under current and future conditions. 

Key results 

1) Results of both applied models, PCR-GlobWB and MONERIS, show a reliable spatial and temporal 

distribution in water quantity and water quality, respectively. However, at smaller scales and for 

individual monitoring stations high deviations to observed run-off and nutrient loads were found, 

which suggests to restrict the interpretation of model results to catchments larger 1,000 km². 
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2) Hydrologic stress of European rivers can be comprehensively expressed through the calculation 

of the ratio (alteration) of hydrologic indicators derived from time-series of daily river discharge 

occurring in a certain scenario and in a near-natural scenario without water abstractions, and 

time-series of discharge occurring in future scenarios of existing water abstractions to cover 

needs. 

3) Mapping the hydrologic alteration on Europe’s geographic background, trends in hydrologic 

stress were indicated across a north-south gradient. 

4) From the hydrologic indicators calculated, the mean annual flow and base flow index were the 

most informative showing that Southern Europe is always more hydrologically stressed than the 

rest of Europe. Specifically, water availability in rivers decreases in large parts of the 

Mediterranean countries, mostly because of water abstractions for agriculture. This is the case 

both in the baseline scenario and in future scenarios. 

5) In the rest of Europe, especially the Northern part, temporal flow variations are much less 

pronounced, and the natural hydrologic conditions are preserved in the anthropogenic (baseline) 

scenario. However, future scenarios indicate positive or negative changes from the natural 

conditions which seem to alternate even among neighbouring FECs. The combination of future 

climate and water management governs the direction of change in each FEC. However, these 

local-based rules do not seem to change from 2030 to 2060. 

6) Both storylines show that, on average, river discharges are likely to increase compared to the 

current situation, being the highest increase during the high flow season, and the lowest increase 

during the low flow season. However, for several rivers discharge during the low flow season will 

decrease for both storylines. 

7) The differences between the two simulated storylines are smaller than the differences between 

the current and the future situation. 

8) Nutrient emission modelled to calculate in-stream nutrient concentrations originate to 59 % (TN) 

from agricultural areas and to 39 % (TP) from urban areas and to 35 % (TP) from arable land. In 

total, 20 % and of area contribute 50 % (TN) and 58 % (TP) of the total nutrient emissions. 

9) In 49 % of the FECs at least three stressors act jointly, only for 9 % of the FECs no active stressor 

was calculated. Ten out of 64 stressor indicator combinations represent conditions in 55 % of all 

FECs. 

10) In 50 % (nu_din) and 40 % (nu_tp) of the FEC thresholds for nutrient concentrations are exceed. 

11) In 26 % (lu_urb) and 60 % (lu_agr) of the FEC thresholds for urban and agricultural land use are 

exceed, respectively. 
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12) In 23 % (hy_maf) and 15 % (hy_basef) of the FEC thresholds for the hydrological indicators are 

exceed. 

13) Nutrient concentrations and land use were found to be the stressor indicators contributing the 

strongest influence on the derived status using the BBN.  

14) Based on the reported ecological status, for 32 % of the FECs a high or good ecological status was 

derived. With an agreement of 69 % this share was reproduced by the BBN.  

15) For all scenarios without mitigation measures the mean probability to reach a good ecological 

status decreases by 3% to 5% on average, with distinct spatial differences. Here, for Broad River 

Types 1 to 5 and 10 average decreasing probabilities of up to -3 %-points were derived, whereas 

for Broad River Types 6 to 9 average increasing probabilities of up to 6 %-points were calculated. 

These mean type-specific values are partly much higher for the individual FEC belonging to a 

Broad River Type. 

16) In principle, the proposed mitigation measures help to foster positive trends and to curb negative 

effects caused by global change. When derived as a Broad River Type mean, the effect of global 

change on the probabilities was in general stronger than such of the mitigation measures. 

Assessed on a FEC level it strongly depends on the local conditions and can hardly be generalised. 

Constraints 

1) Historical and future discharges are simulated with the global hydrological model PCR-GLOBWB. 

Global hydrological models have a relatively course resolution compared to catchment-specific 

models and therefore the degree of aggregation of local processes is relatively high. This can 

result in a lower performance that could have been reached using local catchment scale 

hydrological models, yet for a European scale assessment the homogeneity that can be reached 

using a single model is very valuable. 

2) River flows simulated by the global hydrological model show deviations from observed flows due 

to simplified approximations of water use / management and aggregation of hydrological 

processes. Basins with more information and wetter conditions are simulated better than basins 

with less information and dryer conditions. The projected directions of change are more reliable. 

3) Due to computational constrains of the full modelling chain, data from only one GCM has been 

considered providing a possible future. Uncertainties within GCMs and consequently differences 

between GCMs can be large (Sperna Weiland et al., 2012) and this may have influenced the 

magnitude of the projected hydrological changes considered in this tool. 

4) Collection and treatment of waste water is based on assumptions and discharge concentrations 

had to be estimated for many waste water treatment plants. A more comprehensive data set 
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would help quantifying emission from this important pathway. Further, more reliable complete 

and differentiated input data for tile drained areas, atmospheric P deposition or already 

implemented buffer strips would be valuable input data for this modelling task. 

5) The BBN showed the tendency to underestimate high or good ecological status for broad river 

types already featuring a high share of FECs in moderate or worse conditions. A normal 

distribution of reported status by defining new sub-groups could help to derive more consistent 

or stable probability tables.  

6) A further in-depth analysis of the limited effect of mitigation measures on the probability tables 

could help identifying most effective measure combinations in hot-spot regions. 
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APPENDIX 

Table-A 1: Land use classification used within MONERIS. 

Dataset 
Original 

Class Original Code 
Original 

Code 
MONERIS 

Class MONERIS 

Corine Continuous urban fabric 111 1 Urban Area 
Corine Discontinuous urban fabric 112 1 Urban Area 
Corine Industrial or commercial units 121 1 Urban Area 
Corine Road and rail networks and associated land 122 1 Urban Area 
Corine Port areas 123 1 Urban Area 
Corine Airports 124 1 Urban Area 
Corine Mineral extraction sites 131 2 Open pit mine 
Corine Dump sites 132 2 Open pit mine 
Corine Construction sites 133 2 Open pit mine 
Corine Green urban areas 141 1 Urban Area 
Corine Sport and leisure facilities 142 1 Urban Area 
Corine Non-irrigated arable land 211 3 Arable land 
Corine Permanently irrigated land 212 3 Arable land 
Corine Rice fields 213 3 Arable land 
Corine Vineyards 221 3 Arable land 
Corine Fruit trees and berry plantations 222 3 Arable land 
Corine Olive groves 223 3 Arable land 
Corine Pastures 231 5 Grassland 
Corine Annual crops associated with permanent crops 241 3 Arable land 
Corine Complex cultivation patterns 242 3 Arable land 
Corine Land principally occupied by agriculture 243 3 Arable land 
Corine Agro-forestry areas 244 3 Arable land 
Corine Broad-leaved forest 311 4 Natural covered areas 
Corine Coniferous forest 312 4 Natural covered areas 
Corine Mixed forest 313 4 Natural covered areas 
Corine Natural grasslands 321 4 Natural covered areas 
Corine Moors and heathland 322 4 Natural covered areas 
Corine Sclerophyllous vegetation 323 4 Natural covered areas 
Corine Transitional woodland-shrub 324 4 Natural covered areas 
Corine Beaches 331 7 Open area 
Corine Bare rocks 332 7 Open area 
Corine Sparsely vegetated areas 333 7 Open area 
Corine Burnt areas 334 7 Open area 
Corine Glaciers and perpetual snow 335 7 Open area 
Corine Inland marshes 411 6 Wetland 
Corine Peat bogs 412 6 Wetland 
Corine Salt marshes 421 6 Wetland 
Corine Salines 422 6 Wetland 
Corine Intertidal flats 423 6 Wetland 
Corine Water courses 511 8 Water surface area 
Corine Water bodies 512 8 Water surface area 
Corine Coastal lagoons 521 8 Water surface area 
Corine Estuaries 522 8 Water surface area 
Corine Sea and ocean 523 8 Water surface area 
GlobCorine Urban and associated areas 10 1 Urban Area 
GlobCorine Rainfed cropland 20 3 Arable land 
GlobCorine Irrigated cropland 30 3 Arable land 

GlobCorine Forest 40 4 Natural covered areas 
GlobCorine Heathland and sclerophyllous vegetation 50 4 Natural covered areas 
GlobCorine Grassland 60 5 Grassland 
GlobCorine Sparsely vegetated area 70 7 Open area 

GlobCorine Vegetated low-lying areas on regularly flooded soil 80 6 Wetland 
GlobCorine Bare areas 90 7 Open area 
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GlobCorine Complex cropland 100 3 Arable land 

GlobCorine Mosaic cropland / natural vegetation 110 3 Arable land 
GlobCorine Mosaic of natural (herbaceous, shrub, tree) 

vegetation 
120 4 Natural covered areas 

GlobCorine Water bodies 200 8 Water surface area 
GlobCorine Permanent snow and ice 210 7 Open area 
GlobCorine No data 230 9 Other areas 
ECRINS Lakes  8 Water surface area 

 

Table-A 2: Land use classification of the GLCC data used within MONERIS for scenario calculations. 

MONERIS classes GLCC classes 

Urban areas Urban 
Arable Land Arable land (IR>=80% and IR<80%) 
Natural covered areas Forest, other natural vegetation 
Grassland Grazing Land 
Wetland Wetland 
Open Area Barren Land, Snow and Ice, Set aside 
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Figure-A 1:  Aggregated broad river types derived for the modelling extent in MARS, on basis of ETC/ICM (2015). 

Table-A 3: Country specific data sources on population density, used to supplement population data from EUROSTAT. 

Country Source 

SRB http://www.citypopulation.de/ 
IS https://www.statice.is/statistics/population/ 
TUR EUROSTAT; http://www.turkstat.gov.tr/UstMenu.do?metod=temelist 
AND http://www.estadistica.ad/serveiestudis/web/banc_dades4.asp?tipus_grafic=&check=0&bGrafic=&formule

s=inici&any1=01/01/2001&any2=01/01/2011&codi_divisio=9&lang=4&codi_subtemes=8&codi_tema=2&ch
kseries= 

IM https://www.gov.im/media/1355784/2016-isle-of-man-census-report.pdf 
DK http://www.dst.dk/en/Statistik/emner/befolkning-og-valg 
BLR http://www.belstat.gov.by/en/ofitsialnaya-statistika/social-sector/demografiya_2/osnovnye-pokazateli-za-

period-s-__-po-____gody_3/population-size-by-regions-and-minsk-city/ 
NOR https://www.ssb.no/a/english/kortnavn/fobhoved_en/tab-2012-06-21-03-en.html 
GER Statistisches Bundesamt, Wiesbaden 2016; 

http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz
_zeile=1&gdz_unt_zeile=0&gdz_user_id=0 

ALB http://open.data.al/sq/lajme/lajm/lang/sq/id/669/Popullsia-ne-Shtetin-Shqiptar-1870-2011 
HR http://www.ksh.hu/nepszamlalas/tables_regional_00 
KO http://ask.rks-gov.net/en/kosovo-agency-of-statistics/social/population-and-housing-census 
MNE http://www.monstat.org/eng/page.php?id=234&pageid=48 
NL https://www.cbs.nl/en-gb/society/population;http://www.citypopulation.de/ 
RU http://www.citypopulation.de/;  

http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/en/figures/population/ 
UKR http://www.citypopulation.de/ 

 

Table-A 4: The list of candidates stressor indicators as variables to estimate the probability to reach a GoodOrBetter ecological 
status. 

Attribute code unit Description comment Data source 

m_zhyd code functional elementary catchment (FEC) MARSgeoDB  
m_hyreg5c 

 
broad hydro-region: NOR, CB, ALP, EC, MED MARSgeoDB 

m_btype10size 
 

broad river type, grouped by size criteria: BT1- BT10 MARSgeoDB 
m_wfdgroup natural, 

HMA 
modification of river water body WFD 2016  

lu_urb % share of urban land use in FEC from Corine Land Cover 2012 
(CLC codes 111, 112, 121, 122, 123, 124, 141, 142) 

CLC2012 

lu_agr % share of agricultural land use in FEC from Corine Land Cover 
2012 (CLC codes 211, 212, 213, 221, 222, 223, 241, 242, 243, 
244) 

CLC2012 

lu_for % share of forest land use in FEC from Corine Land Cover 2012 
(CLC codes 311, 312, 313, 324) 

CLC2012 

lu_r_urb % share of urban land use in riparian zone (strip along rivers 
where Copernicus MAES LC/LU data are available) (LC/LU 
level 1 code 1) 

Copernicus LC/LU 

lu_r_agr % share of agricultural land use in riparian zone (strip along 
rivers where Copernicus MAES LC/LU data are available) 
(LC/LU level 1 code 2) 

Copernicus LC/LU 

lu_r_for % share of forest land use in riparian zone (strip along rivers 
where Copernicus MAES LC/LU data are available) (LC/LU 
level 1 code 3) 

Copernicus LC/LU 

lu_r_fort % share of transitional forest land use in riparian zone (strip 
along rivers where Copernicus MAES LC/LU data are 
available) (LC/LU level 2 code 34) 

Copernicus LC/LU 

lu_r_ford % share of broadleaved (deciduous) forest land use in riparian 
zone (strip along rivers where Copernicus MAES LC/LU data 
are available) (LC/LU level 2 code 31) 

Copernicus LC/LU 

http://www.citypopulation.de/
https://www.statice.is/statistics/population/
http://www.turkstat.gov.tr/UstMenu.do?metod=temelist
http://www.estadistica.ad/serveiestudis/web/banc_dades4.asp?tipus_grafic=&check=0&bGrafic=&formules=inici&any1=01/01/2001&any2=01/01/2011&codi_divisio=9&lang=4&codi_subtemes=8&codi_tema=2&chkseries=
http://www.estadistica.ad/serveiestudis/web/banc_dades4.asp?tipus_grafic=&check=0&bGrafic=&formules=inici&any1=01/01/2001&any2=01/01/2011&codi_divisio=9&lang=4&codi_subtemes=8&codi_tema=2&chkseries=
http://www.estadistica.ad/serveiestudis/web/banc_dades4.asp?tipus_grafic=&check=0&bGrafic=&formules=inici&any1=01/01/2001&any2=01/01/2011&codi_divisio=9&lang=4&codi_subtemes=8&codi_tema=2&chkseries=
https://www.gov.im/media/1355784/2016-isle-of-man-census-report.pdf
http://www.dst.dk/en/Statistik/emner/befolkning-og-valg
http://www.belstat.gov.by/en/ofitsialnaya-statistika/social-sector/demografiya_2/osnovnye-pokazateli-za-period-s-__-po-____gody_3/population-size-by-regions-and-minsk-city/
http://www.belstat.gov.by/en/ofitsialnaya-statistika/social-sector/demografiya_2/osnovnye-pokazateli-za-period-s-__-po-____gody_3/population-size-by-regions-and-minsk-city/
https://www.ssb.no/a/english/kortnavn/fobhoved_en/tab-2012-06-21-03-en.html
http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz_zeile=1&gdz_unt_zeile=0&gdz_user_id=0
http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz_zeile=1&gdz_unt_zeile=0&gdz_user_id=0
http://open.data.al/sq/lajme/lajm/lang/sq/id/669/Popullsia-ne-Shtetin-Shqiptar-1870-2011
http://www.ksh.hu/nepszamlalas/tables_regional_00
http://ask.rks-gov.net/en/kosovo-agency-of-statistics/social/population-and-housing-census
http://www.monstat.org/eng/page.php?id=234&pageid=48
https://www.cbs.nl/en-gb/society/population
http://www.citypopulation.de/
http://www.citypopulation.de/
http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/en/figures/population/
http://www.citypopulation.de/
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lu_r_forc % share of coniferous forest land use in riparian zone (strip 
along rivers where Copernicus MAES LC/LU data are 
available) ( LC/LU level 2 code 32) 

Copernicus LC/LU 

lu_r_form % share of mixed forest land use in riparian zone (strip along 
rivers where Copernicus MAES LC/LU data are available) 
(LC/LU level 2 code 33) 

Copernicus LC/LU 

nu_din mg/l N nitrate, nitrite + ammonium concentration in water MONERIS 
nu_tp mg/l P total phosphorus concentration in water MONERIS 
nu_tpero kg/km2/yr total phosphorus emissions from erosion per FEC MONERIS 
nu_tpemi kg/km2/yr total phosphorus emissions per FEC MONERIS 

nu_tnemi kg/ha/yr total nitrogen emissions per FEC MONERIS 
nu_nbal t/km2/yr nitrogen surplus per FEC MONERIS 
nu_psat % degree of phosphorus saturation on agricultural land MONERIS 
eco_gen5c  - general ecological status in 5 text classes WFD 2016  
hy_maf(_abs_norm) % mean annual flow 

alterations - normalised 
value 

hy_maf: ratio between 
present mean annual flow 
and semi-natural mean 
annual flow 

PCR-GlobWB, IHA  

hy_basef(_abs_norm) % base flow index  alteration - 
normalised  

hy_basef: ratio between 
present base flow index and 
semi-natural base flow index 

PCR-GlobWB, IHA  

hy_basef(_pos_norm) % increased base flow index - 
normalised  

hy_basef: ration between 
present base flow index and 
semi-natural base flow index 

PCR-GlobWB, IHA  

hy_basef(_neg_norm) % decreased base flow index - 
normalised  

hy_basef: ration between 
present base flow index and 
semi-natural base flow index 

PCR-GlobWB, IHA  

 

 

 

 

Figure-A 2: Share of correctly predicted ecological status in % of all FECs of broad river Type derived from the trained Bayesian 
Belief Network. 

 

  



  
Deliverable 7.2-1 – MARS Suite of Tools II:  
Scenario Analysis Tool (SAT) 

 

Page 92/93 

Table-A 5: Completed national statistic on inhabitants connected to sewer systems in the years 2000-2011 based on reported 
data from (EUROSTAT). Colour code: coloured cells indicate countries, for which the same connection rate was assumed; red 
numbers indicate countries to which connection rates were transferred. No-coloured cells with red figures indicate Years, for 
which connection rates were calculated from linear interpolation. Blue coloured figures indicate that values had to be adapted 
due to data inconsistencies. 

 

Country 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2001-2005 2006-2010

Albania 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3 3

Andorra 70.4 71.3 73 74 74 74 77 74 78 81 80 81 73 79

Austria 85.4 86 86 88.9 89 90 91.8 92 92.7 94 93.9 95 88 93

Belarus 65.2 65.2 65.2 70.2 66.1 65.5 64.7 64.1 61.3 66.5 64.3 67.8 66 65

Belgium 51.4 54.7 55.0 58.7 60.9 62.2 75.1 85.0 84.3 85.6 86.5 88.6 58 84

BosniaHerzegovina 2.7 2.7 2.6 2.6 2.6 2.4 2.5 6.4 8.1 9.7 11.2 12.9 3 9

Bulgaria 66.7 67.9 68.4 68.6 68.7 69 69.4 69.7 70 70.4 70.6 74.1 69 71

Croatia 8.45 8.45 8.45 8.45 8.45 8.45 8.75 21.6 25.7 29.8 33.9 38.0 9 26

Cyprus 14.3 15.9 18.3 23 28.4 29.8 34 37 40 44 47 51 23 42

CzechRepublic 48.1 48.9 54.4 55.0 55.5 57.8 57.6 59.3 63.3 63.5 65.3 67.1 54 63

Denmark 87.8 88 88.3 88.5 89 89 89 90 90 89.7 90.3 90.7 89 90

Estland 65.2 65.2 65.2 70.2 66.1 65.5 64.7 64.1 61.3 66.5 64.3 67.8 66 65

Finland 83 83 83 83 83 83 83 83 83 83 83 83 83 83

France 81.5 81.5 82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4 81.5 82 82

Germany 94.2 94.5 94.9 95.2 95.3 96 96 97.1 97 97 97.3 98 95 97

Gerorgia 16 17 18 20 25 29 31 33 34 36 41 43 22 36

GreatBritain 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97 97.3 97.3 97 97

Greece 80 80.7 81.5 82.2 83 84 84 85 86 87.3 87.3 88.1 82 86

Hungary 51 53.4 56 57.5 59.5 60.6 63.4 66.5 67.7 68.8 71.8 72.5 57 69

Iceland 35.1 35.1 49.8 49.8 49.8 86.4 88.0 89.4 92.0 91.0 66.4 66.7 54 82

Ireland 61.3 62.3 63.3 64.3 65 66 67 65 69 72 71 69 64 69

Isle of Man 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.0 97.3 97.3 97 97

Italy 94 94 94 94 94 94 94 94 94 94 94 94 94 94

Kosovo 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0 0

Lebanon 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 3

Lettland 65.2 65.2 65.2 70.2 66.1 65.5 64.7 64.1 61.3 66.5 64.3 67.8 66 65

Lichtenstein 51.4 54.7 55.0 58.7 60.9 62.2 75.1 85.0 84.3 85.6 86.5 87.4 58 84

Litauen 45.7 46.0 46.0 50.5 47.3 47.3 47.0 70.7 70.3 71.5 72.0 73.0 47 67

Luxembourg 100 100 100 100 100 99 99 98 98 98 97.1 99 100 98

Makedonia 5 6 6 6 6 6.5 7 7 7 7 7.5 7.7 6 7

Malta 16 16 18 18 15 15 11 10 17 23 20.7 37 16 20

Moldowa 8.06 8.7 9.35 9.99 11.2 11 12 13 12.9 12.9 13.7 16.7 10 13

Montenegro 8.45 8.45 8.45 8.45 8.5 8.5 8.7 22 26 30 34 38.0 9 26

Netherlands 98.2 98.4 98.5 98.6 98.8 99 99.1 99.1 99.3 99 99.4 99.5 99 99

Norway 79.9 80.8 80.5 81.2 81 83.7 84.1 83.7 83.8 85.2 85 85 81 85

Poland 53.6 55.3 56.7 58.2 59 59.2 59.8 60.3 61 61.5 62 63.5 58 61

Portugal 70.4 71.3 73 74 74 74 76.7 74 78.2 81.3 80 81 73 79

Romania 8.06 8.7 9.35 9.99 11.2 11 12 13 12.9 12.9 13.7 16.7 10 13

Russia 65.2 65.2 65.2 70.2 66.1 65.5 64.7 64.1 61.3 66.5 64.3 67.8 66 65

Serbia 3.7 3.7 3.7 3.7 3.7 3.7 3.9 10.7 13.6 16.4 17.8 20.5 4 14

Slovakia 54.7 55.2 55.3 55.9 56.5 57.1 57 58.2 59.3 59.5 60.4 61.6 56 59

Slovenia 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 63 63

Spain 79.5 79.7 81.1 82.6 84.1 85.6 88.4 88.7 86.5 91.8 96.0 95.0 83 91

Sweden 86 86 86 86 86 86 86 86 86 86 86 86 86 86

Switzerland 95.4 96 96 96.2 96 96.8 97 97 97 97 97.3 98 96 97

Syria 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 3

Turkey 16 17 18 20 25 29 31 33 34 36 41 43 22 36

Ukraine 8.06 8.7 9.35 9.99 11.2 11 12 13 12.9 12.9 13.7 16.7 10 13
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Figure-A 3: Mean specific total nitrogen and total phosphorus emissions for the years 2001-2010 per country in the MARS 
modelling extent. 
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Preface 

This document is a synthesis of the work done in five regional catchment case studies of 

work package 7.3: Combining abiotic and biotic models for river basin management planning 

of the FP7 MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) 

project. The five regional case studies were: Vansjø (Norway; Northern region), 

Lepsämänjoki (Finland; Northern region), Odense (Denmark; Central region), Regge and 

Dinkel (Netherlands; Central region), and Sorraia (Portugal; Southern region). The work 

described in this report was started in March 2016. In May 2016 Christian Feld (UDE), 

Jannicke Moe (NIVA), Harm Duel and Ellis Penning (Deltares) organised a workshop on 

Bayesian Belief Networks hosted by NIVA in Oslo, which was followed up by several web 

conference calls. The project finished in December 2017.  
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Abstract 

Aquatic ecosystems in Europe have been heavily degraded over the past century, as a result 

of stressors including eutrophication, hydromorphological alterations and overfishing. 

Accordingly, many measures have been carried out or are planned to improve the ecological 

status of water bodies. For this, models are required to forecast the effects of the measures 

planned. Over the past decade, Bayesian Belief Networks (BBNs) models are increasingly 

applied to aquatic ecosystems. BBNs have a number of advantages, such as explicit 

incorporation of uncertainty in the outcome, the ability to handle incomplete datasets, expert 

opinions and model simulations, and a relative simple graphical representation of complex 

ecosystems interactions. Accordingly, there is an increasing interest in the construction and 

application of BBNs in water management.  

Aim of MARS work package 7.3 

The aim of MARS work package 7.3 is to combine abiotic and biotic models for river basin 

management planning. In this work package, BBNs have been used for the coupling of these 

models.  

 

Case studies 

In this report we have developed predictive BBN models for five case studies catchments 

across Europe to explore the effects of future scenarios on biological responses and 

ecological status of water bodies. The case studies cover many dimensions of the MARS 

project, such as: 

- Three regions of Europe (North, Central, South), with case studies from Finland 

(Lepsamänjoki), Denmark (Odense), The Netherlands (Regge and Dinkel), Portugal 

(Sorraia), and Norway (Vansjø); 

- The two water categories: rivers and lakes; 

- The three story lines: Techno, Fragmented and Consensus world that have been used in 

MARS work package 4.2; 

- Various stressor types: Total P, Total N, hydrology, hydromorphological alterations, 

temperature, etcetera;. 

- Biological indicators: chlorophyll a in rivers and lakes, cyanobacteria in lakes, 

macrophytes, macroinvertebrates, fish, and total ecological status of the water body. 

 

Results 

For all case studies, the BBN method enabled the coupling of abiotic and biotic models, and 

facilitated predictions of biological responses under the different future storylines. Therefore, 

BBNs had a clear additional value compared to the abiotic process-based catchment models 

(MARS work package 4). Below, the main results are presented for the case studies. 

- Norway: The process-based models (INCA-P and MyLake) predicted temperature, TP 

and Chl-a in the lake, while the BBN added predictions on cyanobacteria and their 
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response to increased temperature, and included this in the assessment of ecological 

status. The cyanobacteria node resulted in a stricter assessment of ecological status than 

the chl-a node alone. Due to the cyanobacteria node, this BBN also indicated a slight 

negative effect of increased temperature in the Techno and Fragmented world scenarios 

on ecological status, although effects of land-use changes and nutrients were dominating. 

- Finland: The process-based model (INCA-P) predicted TP and Chl-a in the river for one 

catchments (Lepsämänjok), while the BBN added predictions on EQR (ecological quality 

ratio, based on macrophytes, macroinvertebrates and fish) and total ecological status. The 

ecological status node gave stricter assessments than chl-a alone. As for Norway, 

increased temperature had a negative impact ecological status, but the effects of land use 

were stronger.  

- Denmark: The process-based model (SWAT) predicted flow and nutrients (TP, TN) in the 

river, while the BBN added three biological quality elements: macrophytes, 

macroinvertebrates and fish. Some of the predicted changes in ecological status by the 

BBN contrasted the initial expectations. For example, the probability of High-Good status 

of macrophytes was higher for Techno and Fragmented world than for Consensus world, 

although the latter storyline is more sustainable. A plausible explanation is that the 

differences in ecological status were driven by the hydrological parameters, which depend 

mostly on climate change rather than land-use.  

- Portugal: The process-based models (SWAT) predicted hydrological and nutrient 

variables in the river, while the BBN added four BQEs (phytobenthos, macrophytes, 

macroinvertebrates and fish) and total ecological status. The BBN predicted that different 

BQEs respond differently to scenarios and to mitigation options. Phytobenthos and 

macroinvertebrates responded most strongly to land use. Hence, other mitigation 

measures implemented in Techno world (e.g. dam removal) had no effect in the BBN. 

Macrophytes and fish, in contrast, responded to both nutrients and hydrological stressors, 

and therefore also to scenarios of measures such as a more efficient irrigation and an 

optimization of fertilizers.  

- The Netherlands: This case study demonstrates how stakeholder engagement and expert 

judgement can be utilized to develop a BBN, and even run it for future scenarios. We 

found that presenting a BBN in a group of stakeholders helped them in constructively 

discussing their water systems. The BBN helped the waterboard in discussion among 

colleagues, to obtain common understanding, and with communication towards the 

public. The BBN showed that the impact of human alterations in the streams caused a 

larger impact on the macrophyte abundance than climate change. In fact, in the current 

defined scenarios the impact of the dams nullified the impact of climate change. Only 

changes in riparian zone maintenance would sort an effect.  
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Advantages of using BBNs 

One of the most obvious advantages of BBN is that it can integrate different sources of 

information, such as expert judgement, empirical modelling and process-based modelling into 

a single framework. Another advantage of the BBN is the simplicity, allowing a faster 

scenario analysis than corresponding process-based models. Furthermore, the BBN approach 

provides an opportunity to include biological elements, as demonstrated by our studies, which 

is not the case in many existing process-based models. Moreover, our case studies showed 

that the BBN methodology can facilitate the determination of potential impacts of climate 

change on ecological status of water bodies.  

Disadvantages of using BBNs 

There are several limitations associated with the BBN methodology in the context of 

environmental management. A drawback of the high simplicity of BBNs is the necessity to 

constrain the information in the BBN, which may diminish the credibility of the results. In 

addition, the design of the BBN structure and cause-effects links involves many exploratory 

analyses, and decision making may not be straightforward. The fact that the network cannot 

contain loops puts also constraints on the ecological processes that can be modelled. 

Furthermore, the definition of probabilities involves a big amount of effort, while the 

necessity of defining subjective discretization of variables into interval classes is sometimes 

problematic. At last, the accumulation of uncertainty with the length of the network implies 

that it can be difficult to draw conclusions from the final output.  

Validation 

Developed BBNs should be validated to assess the ability of the model in representing the 

ecosystem. The procedure for validation of models strongly depends on the purpose of the 

model, and – hence - model validation is highly case-specific and it is difficult to generalise 

statements. Based on our case studies, the following criteria have been identified, viz. (1) the 

BBNs should capture the most important causal relationships of the ecosystem modelled, (2) 

the quantification of each of these relationships should be validated separately, and (3) the 

results of the BBNs should be able to fit observed data fairly well.  

 

Differences between BBNs for diagnostic and prognostic purposes 

In task 7.2 of MARS, BBNs have been used for diagnostic purposes, while in this report (task 

7.3) the focus is on prognosis. This led to the question whether different adaptations in the 

BBN design are required when its main purpose is to perform diagnostic versus prognostic 

analyses. The overall general causal structure of a BBN could be used for both diagnostic and 

prognostic purposes. However, a BBN needs to be simplified to become useful for the 

purpose it is designed for. When the focus is on diagnosis, the choices for this simplification 

may be made in a different way than when the model has a prognostic purpose. Accordingly, 

the design of the final BBN model  may differ substantially between BBNs for either 

diagnostic or prognostic purposes.  
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1 Introduction 

 

1.1 Background  

Aquatic ecosystems in Europe have been heavily degraded over the past century, as a result 

of stressors including eutrophication, hydromorphological alterations and overfishing. The 

Water Framework Directive (WFD) commits all European Union member states to achieve 

‘good’ ecological status of all water bodies by 2027. Accordingly, many measures have been 

carried out or are planned to improve the ecological status of water bodies.  

For the formulation of effective measures, insight should be gained about the causes of the 

ecological deterioration (‘diagnosis’). Additionally, predictive models are required to forecast 

the effects of the measures planned. In MARS Workpackage (WP) 4 (Multiple stressors at 

the river basin scale), predictive process-based models have been applied to forecast effects 

of climate and land use scenarios for a large number of case studies across Europe (Ferreira et 

al. 2016) (http://fis.freshwatertools.eu/index.php/casestudies.html). The construction of such 

models however is complicated, because aquatic ecosystems are characterized by complex 

and unknown interactions of abiotic and biotic processes. Additionally, available datasets are 

incomplete or inaccurate with regard to the relationships of interest, and generally there is a 

lack of knowledge about response of the ecosystems to multiple stressors. Accordingly, in 

many cases the only available information to make decisions may be expert knowledge and 

opinion, along with limited empirical data. Consequently, water managers are required to 

make important decisions for measures in the face of a large amount of uncertainty. 

For assessment of ecological status and risk of not achieving management targets, water 

managers needs tools which incorporate the existing knowledge, as well as their uncertainty. 

Modelling tools have been proven as useful for such an assessment (Devia et al., 2015; Trolle 

et al., 2012). Process-based catchment scale models are well known as powerful tools to 

address water quantity and quality issues and to simulate different kind of scenarios (Arnold 

et al., 1998). Such models however require some specific features for succesful application 

for management. First, the existing (expert) knowledge and data should be easy to integrate, 

and it should be able to update them rapidly with new data. Secondly, the models should 

explicitly incorporate uncertainties in their structure and in their predicted outcomes, as these 

uncertainties may play an important role for the final selection of measures. Third, such 

models should be readily be updated to incorporate new scientific knowledge or evolving 

policy needs. Fourth, these models should be meaningful to the broad range of persons 

involved in the decision making process and therefore a clear presentation of the model 

structure and the inference process is required. Finally, process-based catchment models 

typically provide predictions of physico-chemical conditions such as temperature and nutrient 

http://fis.freshwatertools.eu/index.php/casestudies.html
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concentrations (Ferreira et al. 2016), but not on biological indicators that are needed for 

ecological status assessment according to the WFD.  

Over the past decades, several methods have been used that take into account the 

requirements stated above. Of these methods, Bayesian Belief Networks (BBNs) are 

increasingly being applied to aquatic ecosystems to conduct quantitative ecological risk 

assessments and integrate science and management interactions through a decision making 

framework. BBNs have a number of features, such as explicit incorporation of uncertainty in 

the outcome, the ability to handle incomplete datasets, expert opinions and model simulations, 

and a relative simple graphical representation of complex ecosystems interactions. 

Accordingly, there is an increasing interest in the construction of BBNs, and from 2002-2013, 

74 peer reviewed papers containing BBNs have been published for freshwater and estuarine 

ecosystems (reviewed by McDonald et al., 2015).  

 

MARS workpackage 7.3: Combining abiotic and biotic models for river basin management 

planning 

In the EU project MARS, the effects of multiple stressors on ecosystems of rivers, lakes and 

estuaries are investigated. Additionally, MARS provides and overview of tools for river basin 

management under conditions of multiple stress. For this purpose, a number of practical tools 

are presented (http://mars-project.eu/index.php/tools.html) along with a model selection tool 

(http://fis.freshwatertools.eu/index.php/mst.html) , because there is no single tool that can 

cover the variety of conditions across Europe.  

In MARS workpackage 7.2 the diagnostic use of BBNs is presented (Feld et al., 2017). In 

addition, a ‘cook book’ has been made for the construction of such BBN-models (Feld, 2016).  

In this workpackage (MARS 7.3), the predictive use of BBNs is presented for several case 

studies for rivers and lakes in Europe. The construction of this BBNs is based on the results 

of MARS WP 4, in which causal relationships are constructed according to the DPSIR-

approach, ensuring causal relationships between causes for deterioration,  pressures, state 

variables and biota. In WP4, these relationships were subsequently statistically tested with 

large datasets (Ferreira et al., 2016).  

Workpackage 7.3 has built further upon the results of WP4. For this, NIVA organised in May 

2016 a BBN-workhop in Oslo. In this workshop, guidance was given for the application of 

BBN by two specialists, viz prof. S. Mäntyniemi (University of Helsinki, Finland) and dr. D. 

Barton (NIVA, Oslo). Subsequently, BBNs have been developed for case studies by the 

individual partners. The progress and results of the different case studies were regularly 

discussed during video conferences, as well as (potential solutions for) problems that arised 

during construction of the BBNs.  

http://mars-project.eu/index.php/tools.html
http://fis.freshwatertools.eu/index.php/mst.html
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The aim of WP7.3 is to combine abiotic and biotic models for river basin management 

planning. For this purpose, we have applied the BBN approach.  

 

The individual models are mapped to the DPSIR chain of the MARS conceptual framework 

(Figure 1) to structure the discussion between modellers and stakeholders. This framework 

also links the assessment of risk, ecological status and ecosystem services within the 

framework of River Basin Management Plans (RBMPs), therefore providing a close 

integration of stressors, ecosystems and services. 

 

 

 

Figure 1. The MARS conceptual model for an integrated assessment framework 

 

 

MARS storylines: climatic and socio-economic scenarios 

Future climatic and socio-economic scenarios have been developed within MARS 

(deliverable 2.1-4) (Faneca Sanchez, 2015). These scenarios provide both a qualitative 

framework and, where possible, quantitative data for modellers to run simulations. A 

selection of scenarios has been used to define the three MARS storylines 

(http://fis.freshwatertools.eu/index.php/infolib/scenarios.html): "Techno world", "Consensus 

world" and "Fragmented world". Techno world sketches a future in which the world will be 

driven by economy. Policies are focussed on enhancing trade and not on the environment. It 

is based on a combination of the Representative Concentration Pathway (RCP) 8.5 and the 

http://fis.freshwatertools.eu/index.php/infolib/scenarios.html
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Shared Socioeconomic Pathway (SSP) 5. Consensus world is a world in which the economy 

and population keep on growing, but they work on protecting the environment.  It is based on 

a combination of the RCP 4.5 and the SSP2. Fragmented world is based upon unequality. 

Each country needs to fight for its own survival and the environment is only protected locally 

by rich countries. This world is based on a combination of the RCP 8.5 and the SSP3.  

In some case studies we have also tested only the social (land use) changes but with observed 

climate, but for simplicity purposes we have given it the name of the storyline, even if the 

storyline, as defined in MARS, also includes climate change. 

In this study we have made use of the future climate data provided by the MARS scenarios, 

to predict changes in ecological status under different scenarios for two time horizons (2030 

and 2060).  

The storylines are described in fact sheet "MARS scenarios and storylines" (http://mars-

project.eu/files/download/fact_sheets/MARS_fact_sheet03_storylines.pdf).  

Goal of this report 

The following goals have been identified for this report: 

- A description of MARS case studies that have developed and applied BBNs in 

freshwater ecosystems (rivers, lakes) in Europe for predictive purposes; 

- A discussion of methodological issues (and solutions) that have arisen during the 

development and testing of BBNs; 

- A discussion about different methods of validation for BBNs; 

- A discussion about storylines of the MARS scenarios.  

 

1.2 Bayesian Belief Networks 

The BBN approach begins by conceptualising a model of interest as a graph or network of 

nodes and linkages (Figure 2). A network node represents an important system variable and a 

link from one node to another (depicted as an arrow) represents a dependency relationship 

between these variables. These relationships may indicate direct causal dependencies or the 

combined effect of more complex associations. A node has a number of possible discrete 

states (e.g. differentiation between high/low, or 10-20% cover, 30-40% cover), each of which 

has an associated probability of occurring. The likelihood of all categories sums to unity (‘1’ 

or 100%) within a single node (see Table 1).  

http://mars-project.eu/files/download/fact_sheets/MARS_fact_sheet03_storylines.pdf
http://mars-project.eu/files/download/fact_sheets/MARS_fact_sheet03_storylines.pdf
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Figure 2 Example simple BBN network.  (For more details, see Chapter 2.1). 

When no link exists between nodes they are said to be conditionally independent. The 

concept of conditional independence helps in simplifying a complex system by 

deconstructing it into subsets. Input parameters are those nodes that can be measured in the 

field, having no other nodes entering them. Each node can have a series of prior (or 

unconditional) probabilities of being found in a particular state.   

Intermediate nodes depend on input nodes or other intermediate nodes, and are useful for 

linking variables measured on different scales and for linking subsets of the network. These 

nodes are represented by conditional probabilities, which represent the likelihood of the state 

of the node given the states of input parameters affecting it. The probability distribution for 

each given child node is determined by the probability of each state of its parent nodes. For 

example, the probability of the node ‘probability for cyanobacteria blooms’ is conditional 

upon the states of input nodes ‘chlorophyll’ and ‘temperature’ and can be represented using a 

conditional probability table (CPT, Table 1). For further details about BBNs, see 

https://en.wikipedia.org/wiki/Bayesian_network. 

 

Table 1 Examples of a conditional probability tables (CPT): CPT for Cyanobacteria conditional on Chl and water 

temperature. Each column contains the probability distribution of the child node (cyanobacteria) for a given 

combination of states of the parent nodes (Chl and temperature). For more information, see Chapter 2.1. 

 

BBNs have a number of features that make them useful for ecological risk assessment and 

prediction (McDonald et al, 2015). First, they can incorporate and complie qualitative and 

quantitative data from incomplete datasets, model simulations and expert opinions. Secondly, 

they provide predictive analyses of uncertain, complex and multi-state ecosystems. 

Chl (g/L) 0-10.5 10.5-20 20-60 

Temperature (°C)  0-19 19-25 0-19 19-25 0-19 19-25 

Cyanobacteria (g/L)       

0-1000 1.000 1.000 1.000 0.923 0.333 0.323 

1000-2000 0.000 0.000 0.000 0.077 0.333 0.290 

2000-6000 0.000 0.000 0.000 0.000 0.333 0.387 

 1 

https://en.wikipedia.org/wiki/Bayesian_network
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Furthermore, BBNs can be easily created, updated modified and extended. Additionally, 

uncertainties associated with both the model and data can be quantified, and the effects of 

uncertainty are an explicit part of the outcome of the results. At last, BBNs provide a 

graphical representation of complex ecosystems interactions that can be useful in 

management and science integration (McDonald et al, 2015). 

 

Marcot et al. (2006) have given an number of guidelines for constructing BBNs. In our case 

studies, these guidelines have been adhered mostly, viz:  

1. As far as possible, the number of parent nodes to any give node has been kept to three 

or less, and the number of states for each node is five or less. This keeps the 

associated conditional probability tables (CPT’s) small enough to be tractable and 

understandable.  

2. Parentless (input) nodes – typically representing predictor habitat and environmental 

variables – are those items that can be pre-processed or empirically evaluated from 

existing data; 

3. Intermediate nodes are used to summarize the major themes denoted in the ecological 

causal web. 

4. Preferably, all nodes are observable, quantifiable or testable.  

5. The fewest discrete states necessary within any given node are used to represent their 

effects, thereby ensuring that enough states are distinguished to ensure the desired 

precision of the estimates and the range of input values in the model.  

6. The number of layers of nodes (viz. the depth of the model) is kept to four or less, if 

possible. This is desirable for at least three reasons:  

(1) deep models with many intermediate nodes (latent variables) may contain 

unnecessary uncertainty propagated from input to output nodes;  

(2) the sensitivity of the output node to input nodes may be swamped and 

dampened by intermediate nodes;  

(3) output nodes in models with asymmetric structures may be far less 

sensitive to more distant input nodes with many intervening intermediate 

nodes than the modeller intended.  

 

 

1.3 Case studies 

Five regional case studies contributed to this report. These case studies were: Lepsamänjoki 

(Finland), Odense (Denmark), Regge and Dinkel (The Netherlands), Sorraia (Portugal), and 

Vansjø (Norway). These case studies cover a swathe across Europe from the Lepsämanjoki 

catchment in the North East, to the Sorraia catchment in the South West. Figure 3 shows the 

locations of these catchments.  
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Although the case studies share some common features they also show many distinctive 

characteristics. A broad overview of these characteristics is shown in Table 2. More in depth 

information on each case study can be found in the subsequent chapters and in the MARS 

Case study synthesis final report (D4.1, Ferreira et al., 2016). 

 

Figure 3. Map showing the locations of the case study basins. 



 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

16 

 

Table 2. General characteristics of each case study. 

Name Country European 

region 

Water category Main 

stressors 

Main response 

variables  

MARS 

scenarios 

CPT methods Validation 

methods 

Vansjø Norway Northern Lake TP, 

temperature, 

wind 

Chl-a, 

Cyanobacteria; 

ecological status 

Techno, 

Fragmented, 

Consensus 

Based on data 

(observed and 

modelled) 

External 

datasets 

Lepsamänjoki Finland Northern River TP, 

temperature, 

discharge, 

land-use, 

hydro-

morphology  

Chl-a, ecological 

status 

Fragmented, 

Consensus 

Based on data 

(observed and 

modelled) 

 

Odense Denmark Central River Hydrology, 

TP 

Ecological status 

(fish, macrophytes, 

macroinvertebrates) 

Techno, 

Consensus, 

Fragmented 

Data (observed 

and modelled)-

based 

Independent, 

observed 

ecological 

status data 

Regge and 

Dinkel 

Netherlands Central River Hydrology, 

hydrological 

structures, 

maintenance 

Macrophyte 

abundance 

Techno, 

Fragmented, 

Consensus 

Expert 

judgement and 

data-based. 

 

Sorraia Portugal Southern River Diffuse 

pressures, 

abstraction, 
barriers, 

hydrological 

Phytobenthos, 

macrophytes, 

macroinvertebrates, 
fish 

Techno, 

Fragmented, 

Consensus 

Based on data 

(observed and 

modelled) 
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2 Case studies  

2.1 Norway: Vansjø 

 Introduction 

The Norwegian case study represents the Morsa catchment, consisting of the river Hobøl and 

the lake Vansjø (Figure 4). Land cover of the Vansjø-Hobøl catchment is dominated by 

forestry (78%), agriculture (15%) and lakes (7%). The agricultural land-use is mainly cereal 

production (89%), with small areas under grass (9.8%), vegetables (0.6%) and potatoes (< 

0.1%). The local catchment for Vanemfjorden has a much higher proportion of agriculture, 

especially vegetable crops. Agricultural activities contribute about 48% of the total P input to 

the river basin, followed by natural runoff (39%) and waste water treatment plants (WWTP) 

(5%) and scattered dwellings (8%) (Skarbøvik and Bechmann, 2010). The lake has a long 

history of eutrophication from at least the 1970s when systematic monitoring of the lake 

began. Total P concentrations in the western basin Vanemfjorden lie between 20-40 µg/L P, 

above the threshold of 20 µg/L for the good ecological status as required by the Water 

Framework Directive (Skarbøvik et al., 2016). The lake, and in particular the basin 

Vanemfjorden, suffers from toxin-producing cyanobacterial blooms. 

The Morsa catchment is also a case study in MARS WP4 (catchment modelling; 

http://fis.freshwatertools.eu/index.php/vansjo-hobol.html). A detailed description of the 

catchment can be found in deliverable D 4.1 (Ferreira et al. 2016), part3 (Northern Basins 

region). The key physical and chemical processes of the catchment, river and lake process 

have been modelled by a chain of process-based models: PERSiST (catchment hydrology), 

INCA-P (river) and MyLake (lake). This chapter describes the effects of the MARS 

storylines (future land use and climate scenarios) on the river and lake water quality. An 

earlier application of this model chain to Lake Vansjø for a different set of future scenarios 

(in the EU project REFRESH) was reported by Couture et al. (2014). 

The process-based lake model used for Lake Vansjø can predict the MARS benchmark 

indicators (BInd) Total P (BInd02) and Chl a (BInd08), which are also relevant for 

classificiation of ecological status (BInd01). However, ecological status assessment of lakes 

in the Northern GIG should also be based on more details on the phytoplankton community 

composition, including the seasonal maximum cyanobacteria concentration (BInd10). 

Cyanobacteria are not yet predicted by MyLake or other suitable lake models for Lake 

Vansjø. Instead, we use the empirical relationship between observed cyanobacteria values 

and physical and chemical variables (temperature and Chl a) in the BBN for Vansjø. The 

BBN model is set up for the western basin of Lake Vansjø, named Vanemfjorden (all the 

following references to Lake Vansjø will refer to this basin).  

http://fis.freshwatertools.eu/index.php/vansjo-hobol.html
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Figure 4  Geographical location and land-use distribution of the Vansjø-Hobøl catchment. The MyLake 

model is evaluated at the Vanemfjorden station (open circle). A black arrow indicates the outlet of the lakes to the 

Oslo fjord. 

 

 Purpose 

The purpose of the BBN model (Figure 5) was to link the outcome of the process-based 

hydrologic, catchment, and lake models under different climate and land-use scenarios to a 

biological response, i.e. the abundance of cyanobacteria. The ecological status of water 

bodies should be determined primarily by biology and secondarily by supporing physico-

chemical element such as nutrients. However, process-based models typically do not predict 

biological responses other than the Chlorophyll a concentration. By including the 

cyanobacteria abundance in this model, we can obtain a more correct assessment of the 

ecological status in Lake Vansjø.  
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 Model construction 

The BBN model took the output of lake temperature, TP concentration and Chl concentration 

from the MyLake simulations. The development and application of the BBN model for Lake 

Vansjø under different scenarios are described by Moe et al. (2016). Here we use a slightly 

modified version of this BBN model. The current version has been further developed by 

including a climatic variable: wind speed. The reason is that cyanobacteria blooms are more 

likely to occur during periods of low wind speed (Ibelings et al. 2003)   

The conceptual model has five modules (Figure 5): (1) Climate and land use scenarios (yellow 

nodes); (2) output from the process-based lake model MyLake (blue nodes); (3) climatic data 

(red nodes), (4) monitoring data from Lake Vansjø (green nodes); and (5) the national 

classification system for ecological status of lakes (grey nodes).  

Data sources 

The future climate data (obtained from MARS WP4) contain daily values of air temperature, 

precipitation, wind and other variables on a 0.5 ° x 0.5 ° grid, for the period 2006-2095. 

These data are obtained from two different climate scenarios, the Representative 

Concentration Pathways (RCP) 4.5 and 8.5. RCP4.5 is used in the "Consensus world" 

storyline, while RCP8.5 is used in both the "Techno World" and "Fragmented world" 

storylines. The predicted lake temperature, total P and Chl-a for the different MARS 

scenarios were obtained from MyLake and processed for use in the BBN model in the same 

way as described by Moe et al. (2016). The corresponding monitoring data from Lake Vansjø 

as well as the cyanobacteria (Haande et al. 2016) and the processing of these data have also 

been described by Moe et al. (2016). 

The full set of stressor variables considered for the BBN were those predicted by the climate 

model (air temperature, precipitation and wind speed) and by MyLake (secchi depth, TP, Chl-

a and lake temperature). The previous BBN version (Moe et al. 2016) included only the four 

output variables from MyLake; we now wished to investigated whether the BBN would be 

improved by including climatic variables as well. Other potential stressor variables (e.g. total 

N or water colour) were not included because it was not possible to predict these for the 

different scenarios. Secchi depth was omitted from the revised BBN because the most recent 

version of the national classification guidance states that current class boundaries are not 

applicable for lakes with high turbidity such as Lake Vansjø.  
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Figure 5  Conceptual version of BBN model for Lake Vansjø. The conceptual model has five modules, which can be 

mapped to the DPSIR framework (Figure 1): (1) Climate and land use scenarios (yellow nodes; Drivers); (2) output 

from the process-based lake model MyLake (blue nodes; Pressures and abiotc States); (3) climatic data (red nodes; 

Pressures or abiotic States), (4) monitoring data from Lake Vansjø (green nodes; biotic States); and (5) the national 

classification system for ecological status of lakes (grey nodes; Impacts). The set of arrows pointing to one node 

represents the conditional probability table for this node. The possible states and examples of probability 

distributions for each node are shown in Figure 4.  

Model structure 

The relationships between meteorological data and lake monitoring data from the same 

period were explored by GAM, linear models and regression trees. Precipitation did not show 

any relationship with the lake data, and was therefore not included in the BBN. Air 

temperature showed a very strong correlation with lake temperature (R2 = 0.99) and was 

therefore also omitted, assuming that lake temperature would have a more direct effect on the 

biology than air temperature. Wind speed had a significant on the cyanobacteria 

concentration in regression trees: lower wind speed (≤ 3.3 m/s) was associated with higher 

probability of high concentrations. This outcome is consistent with prelimiary experimental 

results from MARS task 3.1 (Stechlin See): higher wind speed provides better mixing of the 

water column, which reduces the competitive advantage of cyanobacteria relative to other 

phytoplankton groups. The final set of predictor variables for cyanobacteria were therefore 

Chl-a, lake temperature and wind speed.  

 

 Class boundaries 

Variables for assessment of ecological status were TP, Chl-a and CyanoMax (seasonal 

maximum of cyanobacteria concentration). Each of these nodes had three intervals that 

corresponded to concentrations of High-Good, Moderate and Poor-Bad status classes, 

respectively (see Table 3). The node Lake temperature had two intervals: below and above 

19 °C. This boundary was determined by a regression tree analysis of the monitoring data: 

the probability of cyanobacteria abundance exceeding 1000 µg L-1 was significantly higher 
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when the lake temperature was above 19 °C (Moe et al. 2016). The node Wind speed also had 

two intervals: below and above 3.3 m/s. This threshold matches well with the thresholds of 

3.3 m/s used to defined calm vs. windy days in MARS task 3.3.1 (Moe et al. 2017, Chapter 

2.3). 

Table 3  Boundaries of status classes for biological and chemical elements included in the BBN model, according to 

the Norwegian classification system*) for lakes of type L-N8a (large, lowland, moderately calcareous, humic). 

Variable Good/Moderate Moderate/Poor 

Chl (µg L-1) 10.5 20 

CyanoMax (µg L-1) 1000 2000 

Total P (µg L-1) 20 39 

*) http://www.miljodirektoratet.no/Documents/publikasjoner/M587/M587.pdf   

 

 Conditional probability tables 

The discrete probability distributions in the CPTs are obtained by different approaches in the 

different BBN modules (see Moe et al. 2016 for more details). In Module 2 (Process-based 

model output), the conditional probability distribution of each child node was calculated as 

the frequency distribution of this variable across each of its parent nodes in the reference 

scenario (extended baseline), for all 60 runs of MyLake pooled together. In Modules 3 

(Climate) and 4 (Monitoring data), likewise, the links from the predicted MyLake outcome to 

the observed data (wind, laketemperature, Total P and Chl-a-a) were based on the joint 

frequency distributions of the two variables. The observed data were paired with the 

corresponding predicted data for the same week, and the concentration intervals were 

compared.  

The CPT for the Cyanobacteria node was also based on counts of observations in the 

previous version (Moe et al. 2016). However, with the additional parent node (wind) the 

number of cells in the CPT was doubled from 18 to 36, and the number of observations (90) 

would not be sufficient for generating probability distributions merely based on counts. 

Instead, we used an ordinal regression method to estimate the probability of the three states of 

cyanobacteria status with the three parent nodes as predictor variables. Ordinal regression is 

similar to logistic regression (where the response variable is 0/1), but allows for more than 

two ranked categories as response variable (such as HG, M, PB), and estimates the 

cumulative probability of each state (see  Figure 6). We used the function "clm" (cumulative 

logit model) in the R package "ordinal" (Christensen, 2015). Temperature and wind were 

categorical predictor variables with two states (low/high), while Chl-a was used as a 

continuous predictor variable (it was not possibe to have all three predictor variables 

http://www.miljodirektoratet.no/Documents/publikasjoner/M587/M587.pdf
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categorical). To obtain the probability distribution for the different combinations of the parent 

nodes, we used the predict function (predict.clm). To obtain a single input value for each 

interval of Chl-a (as required for the predict function), we used the median Chl-a 

concentration of each Chl-a interval. An extract of the resulting CPT for cyanobacteria is 

shown in Table 4. 

 

 

Figure 6  Illustration of a cumulative link model with four response categories (after Christensen, 2015, Fig. 1). 

 

Table 4 Extract of the conditional probability table (CPT) for the cyanobacteria node. Note that the table contains 

only 3 of the 6 intervals of Chl-a. 

Chl-a (ug/L) 5 - 10.5 15 - 20 >25 

Temperature 

(°C) 

<19 >19 <19 >19 <19 >19 

Wind (m/s) <3.3 >3.3 <3.3 >3.3 <3.3 >3.3 <3.3 >3.3 <3.3 >3.3 <3.3 >3.3 

Cyanobacteria 

(ug/L) 

            

0 - 1000 1 1 0.990 1 1 1 0.829 1 1 1 0.065 1 

1000 - 2000 0 0 0.009 0 0 0 0.150 0 0 0 0.337 0 

>2000 0 0 0.001 0 0 0 0.021 0 0 0 0.598 0 

 

The CPT for CyanoMax (the maximum of Cyano for each year; Table 5) was obtained by 

counting the number of observed Cyano in each concentration interval and each season, and 

calculating the frequency distribution across the corresponding CyanoMax intervals for all of 

these observations. For example, out of the 34 observations of Cyano concentration below 

1000 µg L-1 in the months May-June, 10 observations (29%) came from a year where the 

CyanoMax in the same year exceeded 2000 ug/L. Thus, even if the predicted cyanobacteria 

concentration for a single date in June is below 1000 µg L-1, there is still a 29% probability 

that the CyanoMax value will be  >2000 ug L-1 later that year.  

The BBN assigns the probability of ecological status of the lake given estimates total P, Chl-a 

and cyanobacteria abundance, according to the status class boundaries for each variable (Table 

3). The ecological status is determined by two biological indicators (Chl-a and cyanobacteria) 

and one physico-chemical indicator (total P), using the following two combination rules. (1) 

If the cyanobacteria status is lower than Chl-a status, then the combined phytoplankton status 
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is set to the average of the Chl-a and cyanobacteria. (If the cyanobacteria status is equal to or 

higher than the Chl-a status, then the cyanobacteria status is not included). (2) If the 

phytoplankton status is High or Good, and Total P status is lower than the phytoplankton 

status, then the combined lake status is reduced by one status class.  (The status assessment of 

Chl-a and total P based on individual months is not strictly correct, since the assessment 

should be based on the average of observations from the whole period May-October). 

 

Table 5 The conditional probability table for the CyanoMax node. "Experience" is the count of observations for each 

combination of the parent node states. 

Cyano (µg L-1) 0 - 1000 1000 - 2000 >2000 

Month May - 

Jun 

Jul - 

Aug 

Sep - 

Oct 

May - 

Jun 

Jul - 

Aug 

Sep - 

Oct 

May - 

Jun 

Jul - 

Aug 

Sep - 

Oct 

CyanoMax (µg L-1)          

0 - 1000 0.62 0.72 0.67 0 0 0 0 0 0 

1000 - 2000 0.09 0.14 0.11 0.17 0.17 0 0 0 0 

>2000 0.29 0.14 0.22 0.83 0.83 1 1 1 1 

Experience 34 29 27 6 6 2 1 12 2 

 

 
Table 6 Mean values (and standard deviations) of variables predicted by climate model IPSL (wind) or lake model 

MyLake (lake temperature, Total P and Chl-a) for different scenarios and time horizons. Scenarios: BL = extended 

baseline, 4.5 = climate scenario RCP 4.5, 8.5 = climate scenario RCP 8.5, CW = Consensus World, FW = Fragmented 

World, TW = Techno World. 

Scenario Wind Lake temperature Total P Chl-a 

 2030 2060 2030 2060 2030 2060 2030 2060 

BL 2.16 (0.48) 2.17 (0.55) 14.8 (4.8) 14.9 (4.7) 16.7 (6.0) 14.1 (5.6) 8.3 (4.5) 6.3 (3.7) 

4.5 2.13 (0.54) 2.11 (0.53) 17.4 (4.7) 18.4 (4.5) 17.6 (5.3) 15.9 (5.2) 8.7 (4.0) 7.2 (3.5) 

8.5 2.08 (0.46) 2.05 (0.51) 17.6 (4.9) 19.2 (4.4) 17.1 (5.3) 16.0 (5.0) 8.6 (4.1) 7.3 (3.5) 

CW 2.13 (0.54) 2.11 (0.53) 17.4 (4.7) 18.4 (4.5) 14.1 (4.1) 12.4 (3.5) 7.6 (3.7) 6.2 (3.0) 

FW 2.08 (0.46) 2.05 (0.51) 17.6 (4.9) 19.2 (4.4) 19.1 (6.2) 18.3 (6.1) 9.2 (4.3) 8.0 (3.9) 

TW 2.08 (0.46) 2.05 (0.51) 17.6 (4.9) 19.2 (4.4) 21.4 (7.3) 21.1 (7.5) 9.9 (4.7) 9.0 (4.3) 

 

 Scenarios 

The BBN has been run for two types of scenarios: 

1. Explorative scenarios for the cyanobacteria node. Four environmental scenarios were 

defined by the different states of lake temperature (above/below 19 °C) and wind 

(above/below 3.3 m/s): cold and windy (CoWi), cold and calm (CoCa), warm and 

windy (WaWi), and warm and calm (WaCa). These four scenarios have been run for 

the three states of eutrophication (Chl-a status). The purpose was to investigate the 
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response of the cyanobacteria to these stressor combinations, and to identify stressor 

interactions 

2. MARS storylines. The BBN has been run for the 3 MARS storylines (Consensus 

World, Fragmented World and Techno World), as well as for scenarios with climate 

change only. The selected time horizon was 2030 (i.e. years 2020-2040) and 2060 (i.e. 

years 2050-2080). A summary of the output from the climate model and the MyLake 

model (Couture et al. 2017) used in this BBN is given in Table 6. 

 

 Results 

The Bayesian Belief Network was used to project the changes in the ecological status of Lake 

Vansjø given the alternative future climate scenarios and storylines. The BBN provides the 

necessary quantitative links from the projections of Chl-a provided by MyLake to estimates 

of the probability of cyanobacteria abundance that exceed the threshold for good ecological 

status, and to integrate this result with other results from the process-based models using the 

combination rules of the national classification system.  

The combined effect of Chl-a, lake temperature and wind speed on the cyanobacteria status 

and on the phytoplankton status was explored for all possible combinations of the parent 

nodes, for the month July. Two examples of combinations are shown in Figure 7: high (a) vs. 

low (b) wind speed in combination with high lake temperature and intermediate Chl-a 

concentrations. The phytoplankton status is determined by the Chl-a status in combination 

with the cyanobacteria status: the cyanobacteria status can only contribute to reducing the 

phytoplankton status, but not improving it. In all cases, the phytoplankton status was worse 

than the Chl-a status, because there is always a probability of a cyanobacteria bloom, which 

reduces the probability of high-good phytoplankton status.  

The results (Figure 8) show that there was a strong interaction between the effects of the three 

stressors on the cyanobacteria status (left panel). When the Chl-a status was high or good (i.e. 

low concentration of Chl-a), then the two other stressors had no effect on the cyanobacteria 

(Figure 8a). Therefore, the combined phytoplankon status was also equal under these four 

scenarios (Figure 8b). When Chl-a status was moderate, then the combination of warm water 

and calm days (scenario WaCa) resulted in higher probability of cyanobacteria blooms: 

probability of High-Good status was reduced from ca 70% to 60% (Figure 8c). ) This effect on 

cyanobacteria was transferred to the phytoplankton status: probability of poor-bad status 

increased from 10 to 20% (Figure 8d). When Chl-a status was poor or bad, then the warm and 

calm conditions had an even stronger effect on cyanobacteria: the probability of High-Good 

status was further reduced to <10% (Figure 8e). However, since the Chl-a status was already 

poor-bad, the change in cyanobacteria status had no further effect on the combined 

phytoplankton status.  
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a) 

 
b) 

 
 

Figure 7  Examples of results from the BBN model run for two exploratory scenarios: (a) Warm and windy and  (b) 

Warm and calm, both with intermediate Chl-a concentrations. The figure illustrates that the lower wind speed (b) 

results in higher probability of CyanoMax above 2000 µg/L and thereby increases the probability of Poor-Bad 

phytoplankton status (from 10% to 20%). 
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Figure 8 Results from exploratory scenarios of environmental conditions: Cold (Co), Warm (Wa), Windy (Wi) and 

Calm (Ca).  The four environmental scenarios are combined with three states of Chl-a status: High-Good (upper 

panel), Moderate (middle panel) and Poor-Bad (lower panel). Barplots show the probability distribution across 

classes of cyanobacteria status (left panel) and phytplankton status (right panel), which combine Chl-a and 

cyanobacteria status.  

To summarise the exploration of environmental scenarios, (1) the combination of high 

temperature and calm wind will promote high concentrations of cyanobacteria, (2) this 

stressor interaction has the strongest effect on cyanobacteria when Chl-a concentration is high, 

(3) but the effect of this stressor combination on the combined phytoplankton status is highest 

when Chl-a concentration is intermediate. 

Two examples of the full BBN's model predictions for MARS scenarios are shown in Figure 9: 

the posterior probability distributions for all nodes under the two storylines Consensus World 

(a) and Techno World (b), both using the climate model IPSL and the time horizon 2060. In 

the Consensus World scenario (Figure 9a), the probability High-Good (HG) status for Chl-a as 

predicted by the MyLake model is 84%. The probability of High-Good status for 

cyanobacteria, however, is only 67%, and the combined phytoplankton status has even lower 

probability (63%) of being acceptable (High-Good). The Total P predicted by MyLake in this 

scenario has a high probability (93%) of High-Good status, and therefore contributes only 

little to the overall lake status (59% probability of High-Good). 



 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

27 

 

In the Techno World scenario (Figure 9b), the probability of High-Good Chl-a status (63%) is 

much lower than in the Consensus World. The probability of High-Good cyanobacteria status 

is practically unaltered (66%), but the probability of combined phytoplankton status is 

reduced to 46%. In this scenario the Total P status has only 58% probability of being High-

Good, resulting in an overall lake status with only 30% probability of High-Good. 

(a) 

 

 
 

(b) 

 
 

Figure 9 Examples of results from the BBN model run for two storylines: (a) Consensus World, (b) Techno World. 

Both use the climate model IPSL and data from the time horizon 2060. The figure illustrates e.g. that these two 

storylines result in different probabilities of High-Good status of Chl-a (83% and 60%, respectively). The probability 

of High-Good status for Cyanobacteria are quite similar for the two storylines (66% and 64%, respectively). 

Nevertheless, the "Status Cyano" node has an important impact on the combined "Status Phytoplankton" node, 

reducing the probability of High-Good (compared to the status of Chl-a) to 62% and 44%, respectively. The Total P 

node further reduces the probabilty of High-Good status of the lake to 59% and 35%, respectively, for these two 

storylines. 
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The posterior probability distributions (i.e. predictions) for selected nodes has been compared 

across all climate scenarios and MARS storylines (Figure 10). Relative to the extended baseline 

("BL"), the Consensus World storyline would improve the ecological status, the Fragmented 

World storyline would produce a deterioration of the status, and the Techno World storyline 

would give a large deterioration of the status. The results indicated that climate change alone, 

as represented by the two RCPs 4.5 versus 8.5, will not produce great differences in the 

probability of obtaining good ecological status for Lake Vansjø.  

The land-use changes, on the other hand, gave significant changes in the probability of 

obtaining good ecological status in the future. For Consensus World, which includes climate 

scenario RCP4.5, the sustainable land use (environmental agriculture scenario and stable 

domestic wastewater scenario) would result in lower concentrations of total P and Chl-a, 

compared to the climate scenario with no change in land use (columns "4.5"). For 

Fragmented World and Techno World, the intermediate or more intensive land use would 

result in a lower ecological status of total P and Chl-a, as well as sligthly lower ecologcal 

status of cyanobacteria. The effects of these two land use scenarios were most significant for 

total P: the probability of High-Good status decreased by more than 10 percent points (pp) 

from RCP8.5 (75.2% High-Good) to FW (63.8%), and likewise by more than 10 pp to TW 

(52.4%). The effects were less prominent for phytoplankton, where the probability of High-

Good status dropped by only 4-5 pp from RCP8.5 (53.5%) to FW (49.1%) and likewise to 

TW (44.1%). The total lake status, which was determined primarily by phytoplankton and 

secondarily by total P, reflected the changes in phytoplankton status more closely than the 

changes in total P status. This result implies that even large reductions in total P may not 

result in corresponding improvements in ecological status, which is in accordance with 

experiences from Lake Vansjø (Couture et al. 2016).  

The BBN results indicated that cyanobacteria concentrations shows very little response to 

change in scenarios and storylines. The difference in Chl-a status for the three storylines is 

not reflected in the cyanobacteria status. One reason is that the probabilities of 

concentrations >1000 µg L-1 are very low (typically <1%; not shown in plots). The 

probability of Cyano status Moderate or Poor-Bad (i.e. seasonal CyanoMax > 1000 µg L-1) is 

higher (around 30%), but also shows very little response to the scenarios. Another reason for 

the lack of response is that the CPT for cyanobacteria contains high uncertainty. The ordinal 

regression model is based on relatively few observations (103 samples), of which only 13 

samples have cyanobacteria concentration exceeding 1000 ug L-1. As a result of this 

uncertainty, the probabilities of different outcomes do not vary much between different 

scenarios. In future work with this BBN we will continue to investigate more options for 

constructing and updating this CPT, e.g. including data from other relevant lakes and expert 

judgement. Moreover, the two climate scenarios had little difference in wind speed (Table 6), 

therefore the probability distribution of the Wind speed node remained almost unaltered 

(Figure 10a). The wind speeds predicted by the climate model were usually calm (ca. 90%), 
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while the observed meteorological data for Lake Vansjø had only 56% calm days. This 

mismatch was probably due to insufficient downscaling of the climate model predictions to 

the local conditions of Lake Vansjø. Therefore, under the given climate scenarios, the stressor 

interaction between wind and lake temperature seen in exploratory scenarios (Figure 8e) did 

not emerge in different BBN runs.   

 

Figure 10 Results from selected nodes of the BBN model of Lake Vansjø, using outputs from MyLake. 

Shown are the projections for the various climate scenarios and storylines using the IPSL climate model, for the 20-

year period 2050-2070. Colour codes: Temperature: blue = ≤ 19 °C  , red = >19 °C. Wind speed: blue = ≤ 3.3 m/s, red 

> 3.3 m/s. Status nodes: green = High-Good, yellow = Moderate, brown = Poor-Bad. Cyanobacteria concentration: 

green = <1000, yellow = 1000-2000, brown > 2000 (µg L-1). Scenarios: BL = extended baseline, 4.5 = climate scenario 

RCP 4.5, 8.5 = climate scenario RCP 8.5, CW = Consensus World, FW = Fragmented World, TW = Techno World.  

Although the cyanobacteria did not show a clear response to the scenarios in the study, this 

variable still has an important role in the overall status classification of the lake. For all 

scenarios, cyanobacteria contributes to worsening the status assessed by phytoplankton, 

compared to Chl-a alone.  In this way, the status of cyanobacteria, as predicted by the BBN, 

contributes to the overall response of phytoplankton status and of total lake status to the 

scenarios.  
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 Validation 

A previous version of the this model was evaluated by three critical aspects (Moe et al. 

2016): (1) the link from process-based model predictions to observed values, (2) The CPT for 

cyanobacteria, and (3) the effects of water temperature.  

(1) The accuracy of the MyLake model predictions varied highly among the different 

indicator variables. The model performance was discussed in detail by Couture et al. (2014); 

here we only considered the accuracy at the level of node states (intervals) and focus on the 

implications for the BBN model. Our decision not to include the mismatch between MyLake 

predictions and observations in the final BBN version can be justified by the fact that this 

uncertainty should already have been accounted for in the calibration of MyLake. The 

resulting 60 parameter sets were instead included as a source of uncertainty in the BBN. 

Incorporating the prediction − observation mismatch as an additional source of uncertainty 

would not only make the BBN modelnon-responsive to the scenarios, but also introduce a 

systematicerror for TP. 

(2) The CPT for cyanobacteria was a key aspect of the BBN, because this CPT provided the 

link from the abiotic to the biological components. Due to the limited number of 

cyanobacteria observations, to reserve a subset of the cyanobacteria data for evaluation 

purposes would not be meaningful. Instead, we used an independent dataset ("EUREGI") to 

construct an alternative CPT for cyanobacteria and compared the outcome of this version 

with that the original version. The EUREGI dataset gave similar probability distributions in 

the CPT for cyanobacteria to those from Lake Vansjø. Consequently, the model version with 

EUREGI data predicted effects of climate and management scenarios on ecological status of 

cyanobacteria that were very similar to the default model version. The fact that an 

independent, large-scale dataset gave similar CPTs and consequently very similar model 

predictions as the original data from Lake Vansjø strengthened our confidence in the 

cyanobacteria component of the model. 

(3) A critical component of this BBN is the effect of water temperature on cyanobacteria. 

Moreover, since the conditional probabilities used for calculating posterior probabilities for 

cyanobacteria are based on very few observations for some of the parent state combinations, 

it is important to check that these CPTs do not provide spurious results. We therefore 

inspected more closely relationship between temperature, Chl-a and cyanobacteria by setting 

evidence (fixating probabilities) for the nodes Temperature and Chl-a. The results (Moe et al. 

2016) showed that the model behaved as expected regarding seasonal variation in 

temperature and in indicator variables, and that the BBN generated reasonable predictions. 

For the revised version of the model (Figure 17), one of the main changes is the inclusion of 

the node Wind speed as a parent node for cyanobacteria. The effect of wind speed in 

combination with temperature and Chl-a was explored separately (Figure) and provided 
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meaningful results. However, corresponding wind speed data are not available for the larger 

EUREGI dataset, therefore it is not possbile to validate this revised part of the model using 

the larger dataset. 

A BBN model can in principle be used in a diagnostic way. For this case study, this could be 

done by setting evidence (100% likelihood) for a given status (e.g. High-Good) for one or 

more status node and inspect the environmental conditons and scenarios leading to the 

selected state. However, the BBN model for Lake Vansjø was not designed for this purpose, 

and there is therefore a risk of obtaining results that are not informative. For example, setting 

evidence for different states of Cyanobacteria will alter the probability distributions for 

Period (time horizon) and for Months, unless these nodes are also fixed. It is possible to 

develop a BBN model also for diagnostic use for this case study, but it might not provide 

much insight beyond what is already known about this system. 

 

 Obstacles, pros and cons 

There are several limitations associated with the BBN methodology in the context of 

environmental management. The fact that the non-dynamic network cannot contain loops 

puts constraints on the ecological processes that can be modelled; phosphorus and 

phytoplankton dynamics in lakes are typically dominated by feedback processes (Saloranta 

and Andersen, 2007). For example, high phytoplankton biomass can reduce the Secchi depth; 

on the other hand, lower Secchi depth can limit further phytoplankton growth due to light 

limitation. In our study, such feedback loops were handled by dynamic models (INCA-P and 

MyLake), while the BBN summarised the outcome of the catchmentand lake process. 

Moreover, the accumulation of uncertainty with the length of the network implies that it can 

be difficult to draw conclusions from the final output nodes (Borsuk et al., 2004). Other 

challenges associated with the use of BBNs have been discussed previously (Landuyt et al., 

2013; Uusitalo, 2007; Varis and Kuikka,1999). 

Compared to existing process-based models for ecological status of rivers and lakes, the BBN 

approach provides an opportunity to include biological elements, as demonstrated by our 

study. Even when data are sparse, theory or expert knowledge on selected biological 

indicators can be used as a first step to construct causal links (CPTs) between abiotic and 

biotic responses. Since the WFD requires that assessments are based primarily on biology 

(EC, 2000), this is clearly an added value for use of models in water management in Europe. 

Moreover, the WFD requires that potential impacts of climate change are considered in the 

next set of river basin management plans (EC, 2000). Although much knowledge is available 

on effects on climate change on ecosystems, including specific effects on biological quality 

elements in lakes (Moe et al., 2016), incorporating such information in predictive models is a 

challenge. The BBN methodology can facilitate the use of such knowledge, manifested as 
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expert judgement of probabilities under given climatic scenarios. Furthermore, a BBN model 

may be relatively easy to understand for end users who do not have any modelling back-

ground (Marcot et al., 2006). Therefore, BBNs are promising tools for supporting informed 

decision making and thus the work of water managers.  
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2.2 Finland: Lepsämänjoki 

 Introduction 

The Finnish case study represents the river basins in Southern Finland where main soil types 

are till and clay (Figure 10). These soil types have been formed from acidic bedrocks due to 

melting processes during ice age, forming clay fields in the lowland areas in the middle of 

more coarse upland areas. These clays are unstable and thus vulnerable to erosion due to low 

calcium content. On these soil types there is productive agriculture, mainly spring cereal 

cultivation. Around larger towns there are also pressures from intensified urban land use.  

The relatively small study catchment (Lepsämänjoki) in the river basin Vantaanjoki alone did 

not contain enough data for statistical analysis performed in WP4 and thus a larger set of 

representative river basins in southern Finland (Figure 11) were included in the analysis 

(Couture et al. 2016). This BNN modelling is based on all river basins of Rankinen et al. 

(2016) which has river formations dominantly on clay soil types. These river basins cover a 

wide range of different land uses (Table 7). 

 

Figure 11. Location of the clay type river basins 
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Table 7 Land use in the river basins (Corine 2006: for details, see Haakana et al. (2008); Sucksdorff et al, 2001). 

Artificial = areas paved by humans (e.g. towns, roads, etc) 

Code River Catchment area Lakes Fields Artificial 

  (km2) (%) (%) (%) 

16 Koskenkylänjoki 895 4.25 30.92 6.30 

18 Porvoonjoki 1273 1.42 31.77 10.77 

19 Mustijoki 783 1.61 31.04 9.15 

21 Vantaanjoki 1686 2.19 24.11 20.69 

23 Karjaanjoki 2046 11.66 18.44 9.54 

24 Kiskonjoki 629 5.76 23.48 7.41 

27 Paimionjoki 1088 1.85 42.92 8.34 
28 Aurajoki 874 0.44 37.15 12.17 

34 Eurajoki 1336 12.89 23.44 7.16 

 

Ecological status of the clay type rivers is typically moderate or poor. In this type only 10% 

of the rivers has good ecological status (Figure 12). The classification is based on deviation of 

biological quality elements and supporting elements (Total Phosphorus (TP) concentration 

and hydro-morphological alteration) from their type-specific reference conditions (Aroviita et 

al. 2012).  

The stressors of interest are runoff and TP concentration as well as summer temperature of 

river water. Changes are driven by climate and land use. In previous studies temperature and 

TP concentration seem to have a synergistic influence on Chl-a concentration (WP4 statistical 

analysis). Runoff and water temperature also interact because slowly flowing water warms up 

more rapidly than fast flowing water. 

 

Figure 12 Ecological status classification of peatland, mineral land and clay soil river types in Finland (Peat 

N = 972, Mineral N = 640, Clay N = 159). 
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 Purpose 

The purpose of the BBN model was to link the outcome of the process-based eco-

hydrological model to ecological status under different climate and land-use scenarios. 

Process-based models typically do not predict biological responses other than the Chl-a 

concentration. Chl–a concentration is not an official classification indicator in Finland, but it 

is included in the BBN, because it is a MARS benchmark indicator (BInd08).  The boundary 

limits for Chl-a used in this study are those determined for lakes. The BBN model is based on 

observed river temperature, TP concentration and Chl-a concentration, land use and hydro-

morphological modification of the rivers and river basins. Class boundaries are based on 

Jenks natural breakes method that seeks to reduce the variance within classes and maximize 

the variance between classes 

 Model construction 

The conceptual model of the Finnish BNN is constructed based on expert judgement, 

previous studies and statistical analysis of indices and stressors from WP4. It follows the 

simplified structure of MARS conceptual model to reduce the amount of nodes and thus 

uncertainty. 

The BNN model is based on those variables that were found influential in previous statistical 

analysis of WP4.  

Present day situation is based on long time series of land use, climate and nutrient 

concentrations in Finnish rivers (Rankinen et al. 2016) and observed ecological status of the 

rivers. Conditional probabilities between stressors and scenarios were derived using Persist 

and INCA simulation results. A posteriori data is a sample (N = 40) representing rivers on 

clay soil types. Rivers in this sample flow to the Baltic Sea and have continuous discharge 

measurement, which allows accurate runoff calculations. In the validation the rest of river 

water bodies on clay soil types were used (total N = 119) (Table 8 and Table 9).  

Statistical analyses and hydro-ecological modelling is described in detail by Couture et al. 

(2016) in Deliverable 4.1-3 Case study synthesis: Report on case studies from Northern river 

basins.  

Table 8  Hydromorphological modification 

 Not highly modified Highly modified 

Clay rivers 67% 33% 

Sample 75% 25% 
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Table 9  Agricultural field percentage 

 <10% 10-25% >25% 

Clay rivers 4% 32% 64% 

Sample 4% 44% 52% 

 

The BNN is presented in Figure 13. 

According to BNN the ecological status is worse than good (WTG) in 68% of the cases. 

Ecological Quality Ratio (EQR index = Observed value / Reference value) is calculated from 

data on macrophytes, macroinvertebrates and fish). The EQR index shows better status than 

what is estimated by TP concentration. (EQR = Observed value / Reference value). The class 

boundary of TP concentration between good and worse than good is 60 µg l-1. 

 

Figure 13. BNN model for the Finnish clay type rivers (WTG= worse than good) 

Model results were validated against independent data that was not used in construction of 

the model (Table 9).  In validation data 43% of river formations did not have biological 

classification, and 8% did not have physical-chemical classification. Hydromorphological 

modification is missing from 8% of the validation data. Model results showed slightly lower 

percentage of river basins not to achieve good ecological status than validation data based on 

physical-chemical classification.  On the contrary, based on biological classification model 
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results were 20% higher than in validation data. Taking into account the high number of 

missing data in river basins used in validation, this difference may be acceptable.  

Table 10 Percentage of river formations that do not achieve good ecological status 

Indicator Model result Validation data 

Physical-chemical class 72% 77% 

Biological class 52% 31% 

 Conditional probability tables 

The discrete probability distributions in the CPTs are obtained by different approaches in the 

different BBN modules. The linkage between field percentage and TP concentration is based 

on empirical data (Rankinen et al. 2016), as well as that of ELS index (Rääpysjärvi et al. 

2016) and Chl-a concentration (unpublished data). Linkage between hydro-morphological 

modification and ELS index is based on empirical data of Turunen et al. (2016). Linkages 

between summer runoff and water temperature in different climate scenarios are based on 

INCA and Persist modelling in WP4. Finally, linkage between ecological status, biological 

index (ELS) and physicochemical index (TP) is based on data  the second planning period. 

Conditional probability tables for Ecological Status are presented in Table 11. 

Table 11 Conditional probability table of ecological status 

ELS Good Worse than good 

TP Good Worse than good Good Worse than good 

Good 0.83 0.3 0.21 0.2 

Worse than good 0.17 0.7 0.79 0.8 

 

 Scenarios 

According to climate change scenarios both temperature and precipitation is assumed to 

increase favouring agricultural production in Southern Finland. Nevertheless, in BNN climate 

change and land use change are separated to make the model more general. Increase of 

agricultural field area may not be an opportunity in some of these relatively small river basins, 

due to less suitable soil types for agriculture, or competition with urbanization. MARS 

storylines arre Consensus and Fragmented World, which used climate change scenarios 

GFDL, RCP4 for Consensus and RCP8 for Fragmented for 2025-2034. 

- Consensus world: the main objective of the government and citizens is to stimulate 

economic activity but also to promote sustainable and efficient use of resources. The 

current guidelines and policies are continued. As future climate is assumed to favour 

agricultural production by increasing yields in Finland, field percentage is assumed to 

increase, limited only by soil types and field slopes (>10%) which are not suitable for 

cultivation. 
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- Fragmented world: The focus of this storyline is to survive as a country instead of as part 

of Europe. National institutions focus on economic development and no attention is paid 

to the preservation of the ecosystems. In this storyline field area is assumed to increase up 

to 90% of the sub-catchment area as future climate favour agricultural production. As 

current environmental guidelines are not valid, the main production type will be 

monoculture of cereals with increased fertilization level. As the catchment is located 

relatively close to Helsinki, also increase in human settlements in assumed. 

 

 Results 

Temperature increase changes ecological status less than land use change (Figure 14). When 

climate change is combined by radical increase in field area, ecological status will decrease  

(Figure 15a). When high temperature increase is combined with increase in field area and 

increase in hydro-morphological modifications, up to 77% of the sites will show worse than 

good status (Scenario Fragmented). Chl-a concentration changes in the same direction as 

ecological status, but the message is in general more optimistic (Figure 15b). It is worth 

noticing that in the BNN model there is no connection between  hydro-morphological status 

and Chl-a concentration due to a lack of data. 

a)                                               b) 

 

Figure 14 Effect of pressure on ecological status a) climate change only, b) land use change only 
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a)                                                                   b) 

 

Figure 15 Deviation of a) ecological status, and b) Chl a consentration in different scenarios 

 

 Pros and cons 

In BBN the option to use expert opinion makes it a useful tool in cases when the quantity or 

quality of measured data does not allow specific statistical analysis. The method allows 

combining data from different sources and levels, expert opinions and literature values. The 

results are not absolutely accurate, as they inclusively contain the uncertainty of input data. 

On the other hand, the better data is used the more reliable are the model results.  

In this specific case study the BNN was used as an upscaling tool. Effect of climate change 

on water amount and quality was modelled in well studied relatively small catchment, where 

data enough for detailed dynamic eco-hydrological modelling was available. These results 

were upscaled to larger set of river basins with similar climate, geology and agricultural 

production by BNN by combining them with Chl-a and water quality data from this larger 

area. 

BBN needs simplification of the conceptual model of the problem. Simplification makes it 

more visible for researchers and stake holders. For stake holders also thinking by 

probabilities may be a familiar pattern. On the other hand, BBN is a static model which does 

not say anything of the time needed for change, a question that stake holders are often 

interested in.  
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2.3 Denmark: Odense 

 Introduction and purpose 

The Odense Fjord basin is one of those under multiple pressures. Located in the island of 

Funen (Denmark), it has an area of approximately 1,100 km2 (Figure 16). Aquatic ecosystems 

in the basin include lakes, rivers and transitional waters (the Odense Fjord is an estuary). In 

spite of several action plans, many of these waters do not meet the Water Framework 

Directive criteria of good ecological status (Miljø- og Fødevareministeriet, 2017). This status 

has been conditioned due to urbanization, hydro-morphological modifications (channelization 

and tile draining), summer droughts, groundwater abstraction and fertilizers and pesticides 

from the agricultural sectors. More information about the study area can be found in Ferreira 

et al. (2016) and Molina-Navarro et al. (2018). 

 

Figure 16 Location of the Odense Fjord basin and its main aquatic ecosystems. The extent of Odense, the 

main city in the study area, is also depicted. 

Previous work in the Odense Fjord basin within the MARS WP4 

(http://fis.freshwatertools.eu/index.php/odense.html) involved the set-up of a process-based 

hydro-ecological catchment model with the Soil and Water Assessment Tool (SWAT) 

(Molina-Navarro et al., 2017, 2018). Besides, MARS storylines (Faneca Sanchez et al., 2015) 

were used to design three future scenarios to be simulated with SWAT. Since the study area 

http://fis.freshwatertools.eu/index.php/odense.html
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is eminently agricultural, the MARS storylines were downscaled to the Odense catchment 

focusing on the farming context: 

- Storyline 1 - Techno world (TW): Agricultural area remains similar, with some 

conversion to permanent grass and willow. Slight increase in livestock density and slight 

decrease in artificial fertilizer application rates. Climate change scenario RCP 8.5 

(Representative Concentration Pathway 8.5), a rising scenario with very high greenhouse gas 

emissions, is assigned to this storyline. 

- Storyline 2 - Consensus world (CW): Agricultural area decreases and changes towards 

forest and less intensive farming types. Artificial fertilizer application decrease slightly as 

well. RCP 4.5 climate change scenario, a stabilization scenario, was assigned to this storyline. 

- Storyline 3 - Fragmented world (FW): Agricultural area increases and changes towards 

intensive pig and dairy farm types. Livestock density and fertilizer application increase. 

Again, climate change scenario RCP 8.5 rules in this storyline. 

The time horizons for scenarios simulation, explained in Faneca Sanchez et al. (2015), are 

2030 (interval 2025-2034) and 2060 (2055-2064). More detail on the scenarios 

implementation and simulation can be found in the “Odense” chapter from the MARS Case 

study synthesis final report (D4.1, Ferreira et al., 2016), where scenarios were given 

agriculture-related names since the downscaling is focused on the farming context. Thus, the 

downscaled scenarios for techno, consensus and fragmented world MARS storylines were 

named “High tech agriculture” (HT), “Agriculture for nature” (AN) and “Market driven 

agriculture” (MD). 

The SWAT model is able to provide simulated values for a number of variables (flow, 

nutrient concentrations) that might act as water ecosystems stressors, since they can affect 

ecosystem quality. Additionally, empirical models were developed to establish mathematical 

relationships between physico-chemical stressors and biological indicators (fish, macrophytes 

and macroinvertebrate indices) of stream ecological status in Denmark (“Odense” chapter in 

Ferreira et al., 2016).  

A BBN modelling approach can be useful to combine the process-based modelling results 

with the existent data used to develop the empirical modes. That is, it can help to establish a 

relationship between those stressors derived from SWAT (and that were seen as relevant for 

predicting biological indices in the empirical modelling process) and the biological indicators, 

so the probability of a certain ecological status can be derived. Thus, the ultimate purpose of 

the BBN modelling in the Odense Fjord catchment is to provide a graphical, simple but 

effective tool to assess the impact of future scenarios in the ecological status of the streams in 

the catchment.  
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The BBN modelling in the Odense Fjord catchment comprises a multiple stress framework, 

evaluating the impact of land use, agricultural management and climate changes over both 

physical and chemical variables, which in turn act as stressors for the biological variables that 

indicate the ecological status of the streams in the catchment. Such a modelling framework 

might be used as a decision-support tool when designing water management policies or 

applying mitigation actions for those multiple stressors and their interactions. 

 

 Model construction 

The BBN model for the Odense Fjord catchment was designed with the software GeNIe, 

created by BayesFusion and freely available for academic and scientific use 

(www.bayesfusion.com). The network designed aims to connect a number of physico-

chemical variables (“stressors”) with biological variables (“indicators”) that act as ecological 

status indices, following the EU Water Framework Directive criteria (European Parliament 

and Council, 2000). 

Among the stressors seen as relevant for predicting the different biological indicators in the 

empirical modelling work (Ferreira et al., 2016, Andersen et al., forthcoming), only those that 

can be derived from SWAT at a reach level were selected to be included in the BBN. As a 

result, four variables dependent on the hydrological regime and two related with nutrients 

were selected (Table 12). Despite not being identified as a significant stressor in the 

development of the empirical models, total nitrogen concentration was also added to the BBN. 

It might serve as a chemical water quality proxy (nitrogen loads to aquatic ecosystems is one 

of the main environmental problems in Denmark (Kaspersen et al., 2016), and its inclusion in 

the BBN allowed evaluating how the different scenarios might affect it.  

Table 12 Variables selected as stressors for BBN modelling in the Odense Fjord catchment. 

Stressor Description 

BFI Baseflow index, defined as baseflow volume divided by total volume 

Q90 Flow below the 90th percentile* of the flow-duration curve divided by median flow (Q50) 

FRE25 Annual frequency of flow events above the 25th percentile of the flow-duration curve** 

DUR3 Annual duration of extreme flow events three times above the flow at Q50 (days) 

TP Annual mean concentration of total phosphorus (mg/L) 

TN Annual mean concentration of total nitrogen (mg/L) 

* 90th percentile = the flow value that is exceeded 90 % of the time, i.e. a low flow indicator. 

** 25th percentile = the flow value that is exceeded 25 % of the time, i.e. a high flow indicator. 

Among these stressors, TP and TN are also MARS Benchmark Biological Indicators (BInd2 

and BInd3, Birk et al., 2015). Besides, DUR3 is related to MARS BInd4 (mean duration of 
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high pulses within each year), since both represent duration of high pulses, although defined 

different. 

Regarding the indicators, those covered in the empirical modelling work were included in the 

BBN. Namely, three biological indices of ecological status (for fish: DFFV, macrophytes:  

DVPI and macroinvertebrates: DVFI) designed specifically for Denmark by their Danish 

acronym) and one of the MARS Benchmark indicators, the Average Score Per Taxon (ASPT, 

BInd12). More information about the Danish indices can be found in Kristensen et al. (2014, 

fish), Larsen et al. (2014, macroinvertebrates) and Larsen and Baattrup (2015, macrophytes). 

The Ecological Quality Ratio (EQR, observed index divided by its reference value) of each 

index was used. 

Finally, indices values were translated into ecological status classes (bad, poor, moderate, 

good or high) in the network, following the EU Water Framework Directive guidelines 

(European Parliament and Council, 2000). A final node combining the ecological status 

classes (worst case classification) given by the three Danish indicators closed the network, 

which actually is the MARS Benchmark indicator BInd1. ASPT was excluded in the status 

class definition because there are no boundaries defined for Danish streams, but it was kept to 

maintain a MARS Benchmark indicator in the indicator level of the network and to compare 

it with the Danish macroinvertebrate index.  

The BBN created can be seen as a simplified version of the MARS conceptual model for the 

catchment. It also included as drivers the agriculture and climate changes derived from 

SWAT scenarios, as pressures some SWAT outputs related with the hydrological alteration 

besides TP and TN concentrations, and as biotic state indicators the ASPT index and the 

ecological status Danish indices, besides the final ecological status. However, the MARS 

conceptual model contains other elements not included in the BBN, such as outputs from lake 

modelling or ecosystem services and responses. For further details, see the MARS conceptual 

model for the Odense Fjord catchment in Ferreira et al. (2016). 

 Class boundaries 

Once the structure of the network was designed, the variables represented in network nodes 

needed to be categorized. Three levels, “Low”, “Medium” (or “Med”) and “High”, were 

defined for every stressor (Table 13). The boundaries were determined taking into account 

the whole dataset for Danish streams that was also used for empirical modelling (Ferreira et 

al., 2016, Andersen et al., forthcoming). This way, the boundaries represent a whole range of 

field conditions that can determine the subsequent indicator values (conditional probabilities 

between stressors and indicators are also obtained from the national dataset, due to lack of 

observed data in the Odense catchment, as explained later). The discretization was done using 

the “Uniform counts” tool in GeNIe, which creates three classes with the same number of 

data points each. 
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Table 13 Threshold values used for nodes (stressors and indicators) categorization. 

 Stressors: Levels 

 Low Medium High 

BFI < 0.34 0.34 – 0.62 > 0.62 

Q90 < 0.65 0.65 – 0.79 > 0.79 

FRE25 < 7.4 7.4 – 10.6 > 10.6 

DUR3 < 3.4 3.4 – 6.2 > 6.2 

TP < 0.10 0.10 – 0.14 > 0.14 

TN < 3.5 3.5 – 5.1 > 5.1 

 Indicators: Ecological status classes 

(EQR) 

 Poor/Bad Moderate High/Good 

Danish Fish Index < 0.40 0.40 – 0.72 ≥ 0.72 

Danish Macrophyte Index  < 0.35 0.35 – 0.50 ≥ 0.50 

Danish Macroinvertebrate Index  < 0.32 0.32 – 0.52 ≥ 0.52 

ASPT < 0.77 0.77 – 0.89 ≥ 0.89 

 

Regarding indicators, three classes were established too (Table 13), considering the upper and 

lower threshold values for the “Moderate” ecological status class of each index (its ecological 

quality ratio, EQR) according to the literature (Kristensen et al. 2014, Larsen et al. 2014, 

Larsen and Baattrup, 2015). Thus, the classes’ boundaries for each indicator correspond to 

the “Poor/Bad” (PB), “Moderate” (M) and “High/Good” (HG) ecological status classes, and 

so they were translated in the third level of the network.  For ASPT, however, no boundaries 

were found for Danish streams. Thus, ASPT node was not connected to the third level of the 

network, but United Kingdom thresholds (Birk and Hering, 2006) were used to include it in 

the “indicators” level for comparison purposes. 

 Conditional probability tables 

Conditional probabilities between stressors and scenarios were derived using SWAT 

simulation results. For each stressor, the average value for each reach modelled in the basin 

(31 reaches) in a 10-years model run was considered. The stressor´s inclusion in the network 

was based on those that were found relevant in the empirical modelling work, and this work 

used time-series averages (Ferreira et al., 2016, Andersen et al., forthcoming), so the same 

caveat had to be applied here. 

Real data from the Odense Fjord catchment to calculate probabilities between stressors and 

indicators is insufficient. Thus, CPTs in this case were derived from the aforementioned 

Danish streams dataset, which contains real data from 131 streams. Denmark as a whole is a 

lowland country (Windolf et al., 2011), so the use of a national dataset might represent no 

concern in this sense. For the macrophyte index, two stressor-indicator classes combinations 

had no data available (low DUR3 and low Q90; high DUR3 and high Q90). Probabilities of 

the closest neighbour combination were assigned in these cases, following Moe et al. (2016).  



 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

45 

 

The ecological status classes have a 1:1 correspondence with the indicator classes. The final 

ecological status class probability (last network node) was derived taking into account the 

worst class obtained within the three indicators, following the “one out, all out” principle 

established in the EU Water Framework Directive (Van de Bund and Solimini, 2007). 

 

 Scenarios 

In order to facilitate results extractions and comparison, and following the outline of the 

Odense catchment report elaborated for MARS WP4 (Ferreira et al., 2016), three versions of 

the BBN for the Odense Fjord catchment were created: 

- Version 1: Considers only land use changes (LUC) in MARS storylines, and not climate 

changes, to account for the isolated effects of land use changes within scenarios. Thus, only 

LUC scenarios  were run in SWAT with observed climate (2001-2010) (TW_OBS, CW_OBS 

and FW_OBS), including a fourth baseline scenario run with present land use (PLU_OBS). 

- Version 2: Includes the baseline scenarios for the MARS storylines, i.e. present land use 

and projected climate data from 2011-2020 for both RCPs (PLU_4.5, baseline of CW; 

PLU_8.5, baseline of TW and FW). 

- Version 3: Models the MARS storylines downscaled to the Odense Fjord catchment for 

time horizons 2030 (TW_30, CW_30, FW_30) and 2060 (TW_60, CW_60, FW_60), as 

described above.  

It might be highlighted that in this report the original MARS storyline nomenclature, i.e. 

“Techno world” (TW), “Consensus world” (CW) and “Fragmented world” (FW), is kept to 

facilitate comparison with other BBN study cases. However, readers must take into account 

that downscaled scenarios in Odense for techno, consensus and fragmented world MARS 

storylines were named “High tech agriculture” (HT), “Agriculture for nature” (AN) and 

“Market driven agriculture” (MD) in other Odense catchment studies derived from this 

project (e.g. “Odense” chapter in Ferreira et al., 2016; Andersen et al., forthcoming; Molina-

Navarro et al., 2018). 

Although the initial Odense catchment report for MARS WP4 considered two climate models, 

GFDL-ESM2M and IPSL-CM5A-LR; for BBN modelling purposes only the second climate 

model was used to simulate climate change in the catchment, because it yielded the best 

median output both regarding cumulative precipitation and cumulative runoff relative to 

observations (MARS internal document).  
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 Validation 

Probability predictions of stressors from scenarios can be considered as verified since CPTs 

were created with a process-based SWAT model that was already calibrated and validated 

(Ferreira et al., 2016, Molina-Navarro et al., 2017). Similarly, stressors selection influencing 

indicators was based on abiotic-biotic statistically significant models (Ferreira et al., 2016, 

Andersen et al., forthcoming) that were created with the same dataset used for CPTs 

calculation, which somewhat guarantees the reliability of the BBN. However, it must be 

acknowledged that not all the stressors accounted in those empirical models were included in 

the BBN, so an additional validation of BBN probability results would be desirable. Such a 

validation was addressed comparing the probability distribution for ecological status classes 

calculated by the BBN for the PLU_OBS scenario with the real data published in the latest 

Odense Fjord basin management plans (Miljøministeriet, 2011; Miljø- og 

Fødevareministeriet, 2016, 2017). 

 BBN modelling 

Probability distributions for the ecological status classes in each scenario were obtained 

setting the corresponding evidence in the BBN and updating the beliefs. First, the effects of 

isolated land use changes were evaluated (BBN version 1, see Appendix Error! Reference 

source not found. Error! Reference source not found.) comparing TW_OBS, CW_OBS 

and FW_OBS with PLU_OBS. Then, the effects of future storylines were analysed 

comparing the probabilities obtained in the scenarios with their respective baselines (BBN 

versions 3 and 2 respectively, see Appendix Error! Reference source not found. Error! 

Reference source not found.). 

Posterior probabilities were explored setting evidence for a time horizon and for a certain 

ecological status in the final node of the BBN, updating the beliefs afterwards. This allowed 

analysing which scenario might be more probable given a certain ecological status. 

 

 Results and discussion 

 

BBN design 

All the considerations in the previous section resulted in the network design shown in Figure 

17. Additionally, in Appendix Error! Reference source not found. Error! Reference 

source not found., the three versions created for this network are depicted and the CPTs for 

each node are provided. It must be acknowledged that an initial draft of the BBN included an 

additional linkage, because the empirical modelling showed that Q90 was also found relevant 

for the Danish fish index prediction (Ferreira et al., 2016, Andersen et al., forthcoming). 
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However, this caused that many combinations in the CPT for the index had no observed data, 

so the calculation of probabilities based these data was not possible. Thus, in order to get a 

more consistent CTP, considering that both Q90 and BFI are related with baseflow, and that 

Q90 showed a weaker influence than BFI for the fish index prediction (Ferreira et al., 2016, 

Andersen et al., forthcoming), the Q90-Fish index linkage was deleted. 

 

Figure 17 Bayesian Belief Network (BBF) designed for the Odense Fjord catchment. It contains four levels of 

nodes: scenarios (orange), stressors (blue), indicators (green) and ecological status (yellow), as well as their respective 

dependences (arrows). 

Validation 

Figure 18 shows the probability distribution of ecological status classes calculated by the 

BBN for the PLU-observed climate data (2001-2010) scenario and the real probabilities 

derived from real data published in the latest Odense Fjord basin management plans 

(Miljøministeriet, 2011; Miljø- og Fødevareministeriet, 2016, 2017). Unfortunately, the 

availability of Danish fish and macrophyte indices data in the Odense Fjord catchment is 

scarce, and only for the second management plan (unknown ecological status reported for 65% 

and 89% of the total length of the stream network, Figure 18d). Thus, a reliable comparison 

of BBN results with observed data cannot be done for these two indices. Regarding the 

Danish macroinvertebrate index, results show that the BBN modelled probability distribution 

is very similar the one derived from observed data, validating the modelling approach. It has 

to be acknowledged, however, that the observed data refers to a percentage of river length 
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with a certain ecological status, while the BBN was elaborated with river segment data (sub-

basins), regardless its length. 

 
a Data from the first Odense Basin Management Plan (2010-15, includes data from 2003-10, Miljøministeriet, 

2011). 
b Data from the first Odense Basin Management Plan updated in 2013 (median from 01-2008, GIS corrected for 

the SWAT delineated catchment; Miljø- og Fødevareministeriet, 2017). 
c Data from the second Odense Basin Management Plan (2015-2021, includes latest data up to 2012 -2013 for 

fish-, GIS corrected for the SWAT delineated catchment; Miljø- og Fødevareministeriet, 2016, 2017). 

Figure 18  Modelled (BBN) and observed (BMP, Basin Management Plan) probability distribution of 

ecological status classes for fish (a), macrophytes (b) and macroinvertebrates (c), and percentage of river length 

without information for the observed data (d, I.=index, MPhy.=Macrophyte, MInv.=Macroinvertebrate). 
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BBN modelling: Scenario´s simulation results 

Isolated Land Use Change (LUC) scenarios 

First, the isolated effects of land use change (LUC) scenarios were explored. The probability 

distributions of different ecological status across LUC scenarios were very similar, showing 

just discrete variations (Figure 19). The fish index showed slight differences: the ecological 

status slightly moved towards the extreme classes in TW_OBS (mainly towards HG) and in 

CW_OBS (mainly towards PB), while it moved to the moderate status in FW_OBS. This 

matches with slights variations seen in BFI and FRE25 across scenarios (Appendix Error! 

Reference source not found. Error! Reference source not found.). Regarding the 

macrophyte index, the probability of PB status decreased in the TW_OBS scenario, 

increasing the probabilities of M and HG status (Figure 19). This might be a response to a 

DUR3 decrease. Changes in other scenarios, however, were minor. For the macroinvertebrate 

index, probability distributions across scenarios were virtually the same. As a result of the 

combination of the three indices under the “one out, all out” principle (Van de Bund and 

Solimini, 2007), probability distributions for the final ecological status classes remained very 

similar across scenarios (Figure 19). Thus, results observed suggested that isolated LUC 

scenarios might not affect much the ecological status of streams in the Odense catchment. 

These results are in agreement with those obtained in MARS WP4 for the Odense catchment. 

Ecological status nodes in the BBN are dependent on four stressors associated with 

hydrological regime and TP. Process-based modelling results (Ferreira et al., 2016, Molina-

Navarro et al., 2018) showed that changes in land use  alone affected catchment runoff only 

to a small degree. TP concentration is to a large extent driven by hydrology, so it was also 

unaffected by the land use scenarios. The empirical abiotic-biotic modelling also showed 

very small effects of land use change alone for the EQR value of the four indices, which only 

varied at the second decimal level for the 31 sub-basins averages (see table 5.38, Ferreira et 

al., 2016). Thus, regarding LUC scenarios, BBN results were consistent with previous 

findings in the catchment. This gives credibility to the network, and allows addressing the 

next step, modelling combined LU and climate change scenarios. 
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Figure 19  Probability distributions (%) for ecological status classes (PB: Poor/bad, M: Moderate, HG: High/Good) 

for the different indices and LUC scenarios. 

Despite not being at the indicator level, nitrogen load is one of the main concerns for Danish 

aquatic ecosystems (Kaspersen et al., 2016; Thodsen et al., 2016), so it is worth to discuss the 

scenario impacts observed for TN concentration after BBN modelling. Contrary to the other 

stressors, isolated LUC scenarios showed a very noticeable impact on its probability 

distribution. Probabilities of low and, especially, medium TN levels increased in TW_OBS 

and CW_OBS, decreasing drastically the probability of high TN (Appendix Error! 

Reference source not found. Error! Reference source not found.). The opposite trend was 

observed in FW_OBS, in which high TN probability became 100%. Despite not included TN 

as a predictor of biological indices when developing abiotic-biotic empirical models, Ferreira 

et al. (2016) and Andersen et al. (forthcoming) also assessed the scenario impacts on its 

concentration. They obtained similar results (which was expected, since the same data were 

used in these studies): TN values 33% higher in FW_OBS than in the baseline, but 28% and 

20% lower in CW_OBS and TW_OBS, respectively. These results evidence that not only 

nitrate loads (Molina-Navarro et al., 2018), but also TN concentrations, will be impacted by 

differential fertilization across isolated LUC scenarios. 
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MARS storylines 

Similar to isolated LUC scenarios, the probability distributions of ecological status classes for 

the different scenarios remained quite stable across MARS storylines. Major differences were 

again observed for fish and macrophytes indices (Figure 20). The general trend for the fish 

index in the future storylines was an increase of probability of HG status, decreasing M status. 

When simulating isolated LUC, however, the trend was different within scenarios (Figure 19). 

This revealed a stronger effect of climate over land use changes, and might be explained 

mostly by higher probabilities of high BFI in all the scenarios (Appendix Error! Reference 

source not found. Error! Reference source not found.).  The process-based catchment 

modelling results (Molina-Navarro et al., 2018) also revealed larger groundwater contribution 

in all the scenarios except from FW_30 (MD30 in the Odense-specific nomenclature). 

Anyhow, a slight increase of the fish index PB status was also predicted by the network, 

balancing the probability distributions so that the average ecological status was not expected 

to change much. 

Probability variations in the macrophyte index were especially relevant for the 2060 horizon 

(Figure 20). In TW and FW scenarios, HG status probability increased, while probabilities of 

M and PB status probabilities decreased, and vice-versa for CW (M remained stable). This 

trend was not observed in isolated LUC modelling, so it was a consequence of the different 

climate inputs in these scenarios (RCP 4.5 in CW, RCP 8.5 in TW and FW), actually a 

response to the variations in DUR3 (Appendix 3). 

The effects of scenarios observed for the Danish macroinvertebrate index probabilities were 

negligible (Figure 20). The ASPT showed different probability distribution than the Danish 

index in the “indicators” level, which was expected since there were no EQR thresholds 

criteria for Danish streams (and United Kingdom thresholds were used instead; Birk and 

Hering, 2006). However, the behaviour of both indicators was similar and the probabilities of 

its levels barely changed when simulating scenarios (data not shown for ASPT). This is not 

surprising, since both indices are influenced by the same stressors and they also depended on 

the same predictors in the abiotic-biotic empirical modelling (Ferreira et al., 2016, Andersen 

et al., forthcoming). Thus, despite no MARS benchmark indicator was used at the 

“Ecological Status” level of the BBN, the Danish macroinvertebrate index seemed to be a 

good substitute of ASPT (MARS BInd 12, Birk et al., 2015). 

As a result of applying the “one out, all out” principle (Van de Bund and Solimini, 2007), the 

probability distributions of the final ecological status classes became more uniform (Figure 

20). Probabilities barely changed for the short term (2030). For the 2060 horizon, however, 

PB status probability decreased for TW and FW (-6.1% and -4.3%, respectively), increasing 

slightly both M and HG status probabilities. Conversely, for the CW scenario, PB status 

probability increases (+8.2%), while M probability decreases (-7.4%). Despite these slight 

variations, the BBN predicted that the ecological status of rivers in the Odense Fjord 
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catchment would remain mostly PB in the future (% of PB probability varies between 56.7% 

and 69.2%, Figure 20). Comparing these values with the probabilities obtained with observed 

climate and present land use (Figure 19), results suggested that both climate and land use 

changes might not exert a large effect on the ecological status of the rivers in the catchment 

during the coming years. 

 

 

Figure 20 Probability distributions (%) for ecological status classes (PB: Poor/bad, M: Moderate, HG: High/Good) 

for the different indices in baseline (PLU_4.5, PLU_8.5) and combined MARS storylines scenarios 

(MPhy.=Macrophyte, MInv.=Macroinvertebrate). 

Nevertheless, the slight variations observed in the fish and the macrophyte indices were in 

line with the results obtained in the work done for MARS WP4. Process-based modelling 

suggested that climate changes and different climate inputs within scenarios (and not LUC) 

were the main drivers of hydrology and phosphorus transport (Ferreira et al., 2016, Molina-

Navarro et al., 2018). Since the stressors in the BBN are hydrology and phosphorus related, it 

is coherent that the probability variations observed in these indices are related with climate 

inputs. The process-based model revealed important effects on phosphorus transport in TW 

and FW scenarios (Ferreira et al., 2016, Molina-Navarro et al., 2018). However, P seemed to 
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have barely any impact in the simulation of future ecological status classes through BBN 

modelling. This is explained because phosphorus load increase across scenarios was 

associated to a runoff increase, so TP concentration, which is the magnitude included in the 

BBN, was not expected to vary much. 

The empirical abiotic-biotic modelling done for MARS WP4 revealed that the effects of 

combined LUC and climate change scenarios were minor for the fish and the 

macroinvertebrate indices when evaluating averages for the entire catchment (Ferreira et al., 

2016, Andersen et al., forthcoming). The strongest response was observed for the macrophyte 

index, finding the lowest values for the CW scenario in the 2060 horizon, while TW showed 

the highest positive impact. These results match up with the BBN modelling findings, which 

was somewhat expected since the empirical models were used to select the stressors to be 

included in the network. Nevertheless, not all the stressors found relevant to predict 

biological indices were selected, only those that SWAT can predict at a sub-basin level and 

providing enough data to fill the CPT; i.e. only two stressors per ecological status index. 

Finding the same trends when predicting ecological status endorses the robustness of the 

stressors selection in the BBN from the empirical modelling work. 

TN concentration, despite not linked to the biological indices, might serve as a chemical 

water quality proxy. TN was the process-modelling derived stressor showing greater 

variations in its probability distribution after BBN modelling (Appendix Error! Reference 

source not found. Error! Reference source not found.). The trend observed was similar to 

isolated LUC scenarios, as already seen by Ferreira et al. (2016) and Andersen et al. 

(forthcoming). However, probability of high TN in TW in 2030 did not decrease as much as 

when analysing isolated LUC, which means that climate change somewhat favoured higher 

TN concentrations in this scenario, attenuating the effect of LUC.  It might be explained 

because, despite the lower fertilization, nitrate loads did not decrease due to a counteraction 

of a simulated higher discharge, and organic N load increased too (Ferreira et al., 2016, 

Molina-Navarro et al., 2018). In the 2060 horizon, however, lower TN concentration was 

modelled by the BBN, probably due to a higher flow that favours dilution (Molina-Navarro et 

al., 2018). In summary, the variations observed when modelling only LUC remained in the 

MARS storylines, but modulated by climate change inputs. These results are of great interest 

since Denmark is one of the world´s most intensively farmed countries. Despite the efforts 

already done reducing nutrient loading of the aquatic environment (total concentration of 

nitrogen and phosphorus in the streams have decreased by approximately 43% and 40% 

respectively since 1989; Thodsen et al., 2016), further nitrogen reductions are required in 

Denmark for the successful application of the WFD (Kaspersen et al., 2016). However, TN is 

not a limiting nutrient in the streams of the Odense Fjord basin, so its variability might not 

exert a noticeable impact on their ecological status, which estimation is the ultimate purpose 

of the BBN. 
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Posterior Probabilities 

If no evidence is set up in the network, 33% probability for each MARS storyline was 

expected. Figure 21 shows the posterior probabilities for each storyline after setting evidence 

for a certain ecological status in each time horizon and for each index (plus the joint 

ecological status). Results revealed that the percentages barely changed for the 2030 horizon, 

which would mean that in a short term none of the scenarios would favour any ecological 

status class. For the 2060 horizon, only the macrophyte index showed variability, which was 

reflected in the joint ecological status after applying the “one out, all out” principle (Van de 

Bund and Solimini, 2007). The largest differences were observed in the HG status in 2060 

(Figure 21), which might be more probable in TW and less probable in CW, in accordance 

with the results in Figure 20.  

 

Figure 21 Posterior probabilities of each MARS storyline after setting evidence for a certain ecological status 

in each time horizon and for each index (MPhy.=Macrophyte, MInv.=Macroinvertebrate). 

These results contrast with the initial expectations of the scenarios, since CW (“Agriculture 

for Nature” or AN in the Odense-specific nomenclature) was conceived as a scenario to 

favour the good ecological status of waters. Good practices in this scenario included an 
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increase in the forest surface and a decrease in fertilization (Ferreira et al., 2016, Molina-

Navarro et al., 2018). Nevertheless, BBN modelling results described above suggested that 

the differences in ecological status probabilities were a consequence of variation of 

hydrological parameters of scenarios, and those depend mostly on climate changes. CW 

scenario was developed under a lower emissions (RCP 4.5) than TW and FW (8.5), yielding 

different climate inputs that ultimately affected the Bayesian modelling of ecological status 

probabilities. These results are in agreement with the results obtained in the work done under 

the MARS WP4 (Ferreira et al., 2016, Andersen et al., forthcoming, Molina-Navarro et al., 

2018). However, these changes were minor and the main conclusion derived from the BBN 

modelling framework implemented in this work is that no large changes in ecological status 

are expected in the different storylines modelled. 

 

Obstacles, pros and cons constructing and using the BBN 

Using a BBN to model the impact of future scenarios on the ecological status of the rivers of 

the Odense Fjord catchment has both pros and cons. Compared to the other approach used by 

this research team, i.e. linking a process based model with abiotic-biotic empirical modelling, 

the most obvious advantage of the BBN is a larger simplicity. Once the BBN has been 

created, the procedure to simulate scenarios is simpler and faster, allowing the user to have a 

quick overview of the scenario impacts on both the stressor values and the ecological status 

indices at the same time. Besides, everything is done in the same interface (Appendix Error! 

Reference source not found. Error! Reference source not found.), facilitating the 

visualization of modelling results. This simplicity makes the BBN an approach that would be 

suitable to be used as a decision support tool by water managers or other stakeholders without 

high expertise in eco-hydrological modelling. 

On the other hand, a handicap of this larger simplicity is the necessity to limit the input of 

information in the BBN. In order to have a simple, visual model, that might facilitate its use, 

the number of stressors has to be limited, which might diminish the credibility of the results. 

Besides, data availability might be not enough to create CPTs for all the desired nodes and 

combinations, which forces the user to simplify the network. In our particular case, one of the 

caveats that conditioned the data availability was that the BBN was created based on previous 

modelling efforts (process-based and empirical, Ferreira et al., 2016), with given and limited 

data inputs and outputs.  Another disadvantage of the BBN is that it does not allow assessing 

the intra-catchment variability, which is possible to evaluate with the linking of process-

based and empirical modelling (Ferreira et al., 2016, Andersen et al., forthcoming, Molina-

Navarro et al., 2018). 
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2.4 Netherlands: Regge and Dinkel 

 Introduction 

This case study deals with (sections of) two medium sized streams (Regge and Dinkel) in the 

catchment of the river Rhine (Figure 22 left). The catchments of these streams have a 

temperate marine climate with annual precipitation of 800 to 850 mm per year, mean 

evaporation of 560 mm per year and a mean annual air temperature around 9.9 °C (KNMI, 

2016).  

The catchments of the Regge and Dinkel are situated within the authority of Waterboard 

Vechtstromen. The Dinkel catchment (Figure 22 right) includes nine surface water bodies 

according to the Water Framework Directive (WFD) and the Regge catchment covers 22 

surface water bodies (Ministry of Infrastructure and the Environment, 2015). 

An overview of the chemical and ecological status of the surface water bodies of the Regge 

and Dinkel according to the WFD is presented in Figure 23 and Figure 24. Most of the 

surface water bodies of the Dinkel catchment do not meet the objectives for chemical status 

(Figure 24) and only one water body has a good ecological status (Figure 24).  

Land use in the Regge and Dinkel catchments consists primarily of agriculture (60-70%), for 

which an extensive system of artificial watercourses and drainage is present. Apart from 

agriculture, water chemistry is influenced by waste water treatment plants. Urban areas are 

scattered throughout the catchments. Ground and surface water are intensively used for 

irrigation, industry, drinking water and recreation. Parts of the streams and rivers have been 

straightened or deepened for flood prevention; the same applies to its tributaries. As such, the 

main drivers1 of the catchments are: urban development, flood protection, agriculture and 

climate change. Accordingly, the most important reasons for not reaching a good ecological 

status are combinations of insufficient water flow, stream regulation, insufficient connectivity 

for fish and moderate to poor chemical status (nutrients and other pollutants).  

For more information on the Regge and Dinkel catchment we refer to the MARS deliverable 

D4.1 part 2 (Ferreira et al, 2016), as well as http://fis.freshwatertools.eu/index.php/regge-

dinkel.html.  

  

                                                 
1 The definition of a driver within the MARS project is: an anthropogenic activity or climate change 

phenomenon that may have an environmental effect (Birk et al., 2015).  

http://fis.freshwatertools.eu/index.php/regge-dinkel.html
http://fis.freshwatertools.eu/index.php/regge-dinkel.html
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 Purpose 

The purpose of the BBN was to predict the probability for excessive growth of submerged 

aquatic vegetation, based on the combined effects of hydrology, mowing, and nutrients, at the 

spatial scale of a river reach. This variable is related to the MARS benchmark indicator 

“abundance of aquatic vegetation” (Bind11).  

 

Figure 22 Left: River basins according to the RBMP in the Netherlands. Right: Map of the study area. In red 

the Dinkel catchment, in blue the Regge catchment.  

 

Figure 23 Chemical status of surface water bodies in the Regge and Dinkel catchments (Source:  Waterboard 

Vechtstromen, 2015). Left: Total Phosphate, Right: Total Nitrogen. Green: good, yellow: moderate, orange: poor and 

red: bad status. Black: no WFD designated water body. 
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Figure 24 Ecological status of surface water bodies in the Regge (left) and Dinkel (right) catchments (Source: 

Waterboard Vechtstromen, 2015). Green: good, yellow: moderate, orange: poor and red: bad status. 

 

 Model construction 

The causal network of the Bayesian Belief Network (BBN) of the Regge and Dinkel was set 

up according to the guidelines for developing and updating a BBN by Marcot et al. (2006). 

This meant that an initial influence diagram has been drawn based on expert knowledge and 

literature, after which this initial diagram has been discussed and adjusted with the expert 

knowledge of the stakeholder Waterboard Vechtstromen. The resulting diagram is shown in 

Figure 25. 

The software packages that were used for calculations and display are: GeNIe (available from 

www.bayesfusion.com) and SamIam (available from http://reasoning.cs.ucla.edu/samiam/). 

In the next step, we simplified and converted the influence diagram into a BBN (Figure 26). 

Nodes that were relatively difficult to measure and deemed unnecessary were removed, 

according to the guidelines of Marcot et al. (2006).  

The simplifications that were applied were:  

- Removal of the nodes influencing discharge. Discharge is measured in parts of the 

catchment, while surface runoff and groundwater seepage are not.  

- Removal of the slope of the river bed. There were four parent nodes influencing water 

velocity. The slope of the river beds in the entire area is nearly the same. Therefore, it was 

deemed as one of the lesser interesting nodes influencing the water velocity in the Regge 

and Dinkel area. 

http://www.bayesfusion.com/
http://reasoning.cs.ucla.edu/samiam/
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- The sediment section is converted into one node: phosphorus (P) in the sediment. This 

section of the diagram was deemed too complex for the current application. The amount 

of phosphorus in the sediment has been shown to increase the growth of macrophytes 

(Smolders et al., 2015). Due to the fact that the surroundings of the Regge and Dinkel are 

for more than two thirds farm lands (Ferreira et al., 2016), we assume that the phosphorus 

concentration in the sediment (under suitable conditions, e.g. low enough flow velocity) 

will always sufficient for abundant macrophyte growth.  

- The four nodes influencing the macrophyte abundance were kept in the model. All 

variables associated with these nodes play an important role for macrophyte abundance in 

streams. 

- Maintenance was split into two nodes. To take different types of maintenance into 

account. This simplification was actually applied during the filling in of the CPT’s, as we 

found out that it would be difficult to interpret the combined effect of maintenance of the 

riparian zone vs maintenance of the channel.  

The initial influence diagram was developed in addition to the conceptual MARS model of 

WP 4.1-3. Parts of the conceptual MARS model of the Regge and Dinkel case study can still 

be found in the BBN, however there has been adjustments to fit the BBN.  

 

Figure 25 The influence diagram of the Regge and Dinkel case study. For phosphorus, it is assumed that are 

adsorped on sediment particles (e.g. clay, silt) 
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Figure 26 The BBN of the Regge and Dinkel case study. For phosphorus, it is assumed that are adsorped on 

sediment particles (e.g. clay, silt). For a more detailed explanation: see text.  

 Class boundaries 

After the construction of the causal web, the classes were derived by using expert knowledge 

and available literature (Smolders et al., 2017; Janauer et al. 2010; Nichols, 2010). Key to the 

definition of the classes was to keep the BBN as simple as possible.  

If clear numerical thresholds were available, these threshold were used. In some cases 

however, we made use of ordinal states, such as “low”, “medium”, and “high”. These ordinal 

states were chosen due to the lack of location specific data. In this way general knowledge of 

the working of rivers can still be implemented into the model and the possibility to refine the 

BBN remains open. 

To identify the necessary classes for all parent nodes, we discovered that it is best to let these 

classes be (at least partially) steered by what is needed in the child nodes. Therefore, we 

started by looking at the necessary classes for the “Macrophyte abundance” node and worked 

our way up from there.  
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The “Macrophyte abundance” was divided into three classes “low”, “medium” and “high”. 

The state of this node is determined by four parent nodes, namely: Light, P in sediment, 

Maintenance and Water velocity. 

For macrophytes to grow a minimum amount of light is needed. Therefore, the light node was 

split into two classes: “yes” (meaning that the minimum amount for macrophyte growth is 

reached) and “no” (meaning that the minimum amount for macrophyte growth is not reached).  

Besides light, maintenance will have a direct effect on the abundance of the macrophytes. 

Many streams in the catchment experience maintenance for flood control. This means that the 

water managers sometimes remove macrophytes from the entire water bed to keep the water 

flowing. However, the maintenance can be classified in different intensities of mowing. 

Therefore, this node was split into the classes “not” (no maintenance), “medium”, and 

“strong”.  

The amount of phosphorus in pore water of sediment needs to reach a certain threshold 

before it starts to influence the abundance of macrophytes (Smolders et al., 2017). This 

threshold (30 µmol total-P per liter pore water (in sediment)) was translated into two classes: 

“above 30 µmol/l” (associated with high submerged macrophyte cover) and “below 30 

µmol/l” (low cover).  

The classes of water velocity were determined partially according to the study of Janauer 

(2010). In this study the effect of water velocity on the abundance of several submerged 

aquatic macrophytes was measured. The classes that we used were: “0-0.5cm/s”, “0.5-4 

cm/s”, “5-30 cm/s”, “31-69 cm/s” and “69 cm/s or higher”. The classes 0-0.5cm/s and 0.5-4 

cm/s were made in accordance with the water velocity needed for sedimentation of very small 

particles (see the section on phosphorus).  

The amount of light in the system is determined by the amount of riparian vegetation, which 

can be either “high”, “medium”, of “low”.  The amount of riparian vegetation is mainly 

determined by its maintenance, which has the same classes as the maintenance on the 

submerged vegetation.  

Phosphorus is mainly transported into the water system via overland flow. It enters the 

system mostly bound to fine sediments. Therefore, we assumed that for the amount of P in 

the sediment to reach the threshold for a high macrophyte abundance the water velocity needs 

to be low enough for small silt particles to settle. This implies that according to the Hjölstrom 

diagram the water velocity needs to be almost zero (max. 0.5 cm/s) (Nichols, 2010).  

Dams or weirs can either be present or not, therefore this node was given two classes, either 

“yes” or “no”.   
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Finally, the classes for river discharge and depth profile cross section were determined by 

what was present in the catchment. For the average discharge in the growing season (May-

September) the min-max range of these data was roughly 0-11 m3/s. To get to the ranges of 

surface area the range of depths and widths present in the Regge and Dinkel catchment have 

been checked. These were 0 – 33 m and 0 - 2.70 m respectively. This led us to a range of 

surfaces between 0-89.1 m2, which was then rounded off to 0-100 m2. We then divided the 

discharges and surface area into classes meaningful for the flow velocity.  

 

 Conditional probability tables 

In the next step, the conditional probability tables (CPTs) for the BBN have been determined. 

These probability tables are the heart of any BBN. Parentless nodes have unconditional 

probability tables that represent prior knowledge on frequencies of each state. Child nodes 

have CPTs that represent combinations of all states of its parent nodes. 

The probabilities in the CPTs were filled in based on general knowledge, internal consistency 

and calculations. If the nodes were filled in based on general knowledge the probabilities 

were translated via Table 14. To keep internal consistency, sometimes slight adjustments to 

the probabilities were made (e.g. to allow for slight increases in probability, 0.05 was added 

or subtracted from initial chances, therefore resulting in fractions such as 0.55).  

For the dam node we assumed that during the growing season the discharge is usually low. 

This means that the presence of dams will usually result in (more or less) stagnant water. 

Therefore, we assume that in the presence of dams the water velocity will always be below 

0.5 cm/s. 

The probability on a total-phosphate concentration of 30 µmol/l in porewater in sediments of 

streams with a water flow < 0.5 cm/s was assumed to be high, since most sediment particles 

to which the phosphorus is bound should settle at this velocity. If this velocity was exceeded 

the probability on a high phosphate concentration was assumed to be low.  

The probability table for flow velocities was calculated based to the following equation: 

m/s = (m3/s)/m2 

The relations between maintenance, riparian vegetation and light were estimated.  

Subsequently, the CPT’s as well as the structure of the BBN were discussed and validated 

with experts of the water board. 

As a last step the parts of the CPT’s for which measurements were available, were updated 

using these data. The MARS storylines have been adjusted to fit the BBN model of the Regge 

and Dinkel catchment regarding changes in discharge, phosphate and the riparian zone. In the 
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Results section, a more detailed explanation is given about the structure of the BBN, the 

variables that are (not) included, and the boundaries of the classes.  

Table 14 Translation of ordinal chances into fractions.  

 

 

 

 

 

 

 

 Scenarios 

Explorative scenarios 

The BBN was run for several explorative scenarios to determine how each input node (river 

discharge, channel cross section, presence of dams and the two types of maintenance) 

influenced the macrophyte abundance. All input nodes were set once to their maximum and 

once to their minimum class after which the BBN was run. This lead to 25 = 36 runs.  

Storylines 

The suitable elements of the WP4 Regge and Dinkel process model storylines (Table 5.42 in 

Ferreira et al., 2016) were translated to the BBN. These elements applied to a change in 

discharge, phosphate and the riparian zone.  

The baseline was chosen based on generic characteristics of a small stream in the Regge and 

Dinkel catchment (Table 15). 

Table 15. Baseline settings 

Node Class 

River discharge  0.01-0.05 m3/s 

Channel cross section 1-2 m2 

Dam Present 

Maintenance in the riparian zone Medium 

Maintenance in the submerged zone Medium 

The MARS storylines are shaped by a combination of land use and climate scenarios. 

Running the BBN for each storyline and each separate scenario plus a baseline lead to nine 

BBN runs (Table 16). 

Ordinal chance Fraction 

Extremely high 0.95 

Very high  0.9 

High 0.8 
Moderately high 0.6-0.7 

Not high, not low 0.5 

Moderately low 0.3-0.4 

Low 0.2 

Very low 0.1 

Extremely low 0.05 
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The amount of change in river discharge for each storyline and each separate scenario was 

calculated based on Sobek-model results for the time horizon 2060 as presented in the WP4 

synthesis report (Ferreira et al., 2016). The amount of change in river discharge of each 

storyline or separate scenario was translated into fractions, which were then applied to the 

median of the BBN baseline river discharge class (Table 16).  

Table 16.  Overview of discharge levels for each storyline and each scenario. Discharges are based on a 

percentage of the median of the BBN baseline discharge class based on Sobek-model data (Table 5.49 - Ferreira, 

2016) .  

Storyline Land use scenario Climate scenario Decrease 

(%) 

Discharge 

(m3/s) 

Baseline - - 0 0.030 

- Fragmented world - -28 0,022 

- Techno world - -44 0,017 

- Consensus world - -9 0,027 

- - IPSL-CMA-LR RCP8.5 -28 0,022 

- - IPSL-CMA-LR RCP4.5 -19 0,024 

Fragmented world Fragmented world IPSL-CMA-LR RCP8.5 -50 0,015 

Techno world Techno world IPSL-CMA-LR RCP8.5 -66 0,010 

Consensus world Consensus world  IPSL-CMA-LR RCP4.5 -25 0,023 

  

The phosphate concentrations in sediments increase for every storyline in comparison to the 

baseline. In the current BBN it is assumed that the phosphate concentration is always high 

enough for a high abundance of macrophytes to occur. This means that the inclusion of this 

element would not cause an effect in the current BBN and it was therefore left out.  

The intensity of maintenance in the riparian zone differed per land use scenario.  The 

maintenance of the riparian zone in the Consensus world is expected to become minimal due 

to a pro-environment attitude. In the Techno world the intensity increases, but not enough for 

it to become ‘high maintenance’, because people prefer to keep their land use optimal, but 

also understand the need for bufferzones. Finally, the maintenance intensity of the riparian 

zone in the Fragmented world will become high, because people in this scenario do not care 

about the environment, but prefer to have as large lands as possible for farming.  

The generic characteristics of the stream  include the presence of a dam, which affects the 

discharge patterns of streams. The calculated scenario discharges however all still remain 

within the same discharge class, despite a trend for decreasing discharge. Therefore, to make 

the effect of a decrease in discharge discernible, three additional scenarios were run without 

the presence of a dam and with a decreasing discharge. 
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 Results and discussion 

Setting up a model 

It must be noted that the final structure of the BBN needed to change because of new insights 

about interactions between different nodes. This was the case with our BBN, when 

maintenance turned out to mix two types of maintenance which could affect the macrophyte 

abundance in different ways.  

Explorative scenarios 

The results of the storylines and separate scenarios are shown in Figure 27. For facilitation of 

the interpretation of the results, multiple graphs were made, each based on one input node. 

For the other graphs see: Appendix Error! Reference source not found. Error! Reference 

source not found..  

The results showed that dams only have an effect at high river discharge or with the 

combination of low discharge ànd small cross section profile. Overall, the probability for 

extensive macrophyte vegetation increases with the presence of dams. This effect is 

especially strong with a high intensity maintenance on riparian vegetation. 

The cross section profile only affects macrophyte abundance if there are no dams present. A 

small profile decreases the possibility of a high macrophyte abundance to zero as a result of 

increased flow velocity. Similarly, river discharge only has an effect is there are no dams 

present. Overall, a high river discharge decreases the chances on a high macrophyte 

abundance. A high maintenance on submerged macrophytes means a lower probability on a 

high abundance, while a high maintenance of the riparian zone leads to higher probability.  

Overall, it can be concluded that these results are in line with expert knowledge.   

 

 



 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

66 

 

 

Figure 27 Results of the maximum and mininimum scenario for the node “vegetation maintenance in the 

submerged zone”. FH: Discharge high, FL: Discharge low, PL: cross section large, PS: cross section small, DN: no 

dams present, DY: dams present, RL: maintenance in the riparian zone low, RH: maintenance in the riparian zone 

high, SH: maintenance in the submerged zone high, SL: maintenance in the submerged zone low.  

Storylines  

There was no discernible effect of the climate change on the outcome of the BBN runs in 

comparison to the baseline. The reasons for this were twofold, due to the fact that climate 

only affected the discharge:  

1. There was a dam present in the baseline scenario and this would have excluded any 

effect of differences in discharge.  

2. The amount of change in discharge due to climate was still within the boundaries of 

one discharge class.  
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The storylines had little effect on the probability for excessive macrophyte growth. Only the 

changes in riparian zone maintenance sorted an effect. The influence of the storylines on 

discharge was not visible due to the reasons already mentioned for climate.  

The scenarios that differed from the baseline are shown in Figure 28 (A). There is a decrease 

in the probability for excessive abundance of macrophytes in the Consensus world scenario 

compared to the baseline, while there is no change in the Techno world and  in the 

Fragmented world scenario.  

The effect of a decrease in flow velocity when no dams would be present becomes apparent 

in Figure 28(B). In the absence of a dam the water can flow faster, which causes a lower 

chance on a high (nuisance) abundance of macrophytes. Only when the stream almost dries 

out, which is the case in the lowest discharge class, the chance on a high abundance of 

macrophytes increases and becomes equal to the baseline scenario including dams.  

Figure 28. Results of storyline runs (A). In these runs dams are present. Results of the 

extra discharge scenario runs (B).  In these runs no dams are present.  
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2.5 Portugal: Sorraia 

 

 Introduction 

The Portuguese case study is the Sorraia basin which occupies an area of 7730 km² and flows 

along a length of 155 km (Figure 29). It merges with the river Tagus at the estuary and it is 

also the Tagus tributary with the largest basin area. Roughly half of the Sorraia basin is 

covered by cork-oak forest, mainly in the headwaters, while the remaining is covered by one 

of the largest area of irrigated crops in Portugal, with a total of circa 15500 ha. Overall, 

approximately 41% of the area is forest, 28% range-grasses, 17% agriculture, 9% pine, 2% 

orchard, 2% urban and industrial and 1% pasture (Mateus et al. 2009; 

http://fis.freshwatertools.eu/index.php/sorraia.html ). 

 

 

Figure 29 Tagus river basin with the location of the Sorraia case-study basin 

Sorraia watershed is characterized by a Mediterranean climate, with high temperature and dry 

summers, and low temperature wet winters. The average annual precipitation is around 600 

mm, from 400 mm in the dry years to up to 900 mm in the wet years. The average monthly 

precipitation is 50 mm, ranging from 25 mm in hot months (April - September) to 70 mm in 

cold months (October - March). The presence of two large reservoirs in the basin affects flow 

http://fis.freshwatertools.eu/index.php/sorraia.html
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patterns and runoff downstream. Additionally, the natural flow is substantially reduced by 

water abstraction for irrigation. The Sorraia watershed has a total of 153099 habitants with a 

density of 20 hab/km2, mainly concentrated in three core areas: Ponte de Sôr (16722 hab), 

Samora Correia (17123 hab) and Coruche (19944 hab) (INE, 2011). It has only minor issues 

regarding urban pollution and urban wastes. 

According to the River Basin Management Plan (RBMP), the main pressures on the basin 

are: (1) Hydromorphological changes, (2) Diffuse pollution, (3) Municipal discharges, (4) 

Flow regulation and (5) Water abstraction. Key ecosystem services identified by the RBMP 

are water for irrigation, recreation services and waste water treatment. The Water Framework 

Directive (WFD) status of 122 water bodies is: 54 good (44%), 15 moderate (12%), 12 poor 

(10%), 2 bad (2%) and 39 (32%) unclassified. The main causes of poor or failing status in the 

basin are mainly related with the water demand for agricultural purposes, which in the 

Sorraia basin is the highest within the Tagus river basin region (26% of total need). Nutrient 

loads from agriculture, livestock and urban origin, mainly in the alluvial valley, are also 

important potential causes of poor status in the basin. The Sorraia catchment was also used as 

a case study in MARS WP4 and a more detailed description of the catchment can be found in 

MARS deliverable D 4.1-2 (Ferreira et al., 2016). 

A basin wide conceptual model based on the DPSIR framework was developed for the 

Sorraia Basin (see Ferreira et al., 2016), which defined the main drivers and pressures acting 

upon the Sorraia Basin that were considered in this case study. This conceptual model was 

used to frame the process-based and empirical-based modelling. This link between both 

modelling approaches and the basin-model allow abiotic and biotic state predictions under 

climate and land-use change scenarios, as well as under different response (measures) 

scenarios, defined according to the MARS storylines. Two drivers, agriculture and climate 

change, giving rise to four pressures, (1) diffuse pressure, (2) abstraction/flow diversion, (3) 

dams, barriers and locks and (4) hydrological alteration, were considered. The model focused 

on the main stressors identified for the basin: hydrological regime and nutrients acting on 

several biotic quality indicators. 

 

 Purpose 

The construction of a Bayesian Belief Network (BBN) to the Sorraia case study is mainly to 

provide a prognostic tool that will allow end users to assess the general evolution of 

ecological status under future climate and socio-economic scenarios. The BBN also includes 

the implementation of alternative measures to mitigate global changes. 

 

 Model construction 

The BNN model was based on a subset of the MARS conceptual model for the Sorraia basin 

(see Ferreira et al., 2016), essentially focusing on the effects of low flow and nutrients on the 
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biotic quality status of rivers (Figure 30). We considered four main components within the 

BBN, from parent to child nodes: (1) climate scenarios, socio-economic storylines and 

measure scenarios, (2) pressures and stressors, (3) natural environmental background and (4) 

biotic state.  We followed the climate scenarios and socio-economic storylines adopted by the 

MARS Project (Faneca-Sanchez et al. 2015). Pressures consisted on three land use cover in 

the upstream catchment: % of agriculture, % of irrigated crops and % of urban areas. The 

stressors included three hydrological variables related with low flow – flow alteration, mean 

number and duration of low flow events – and one nutrient stressor – total N. Natural 

environmental background included a variable expressing longitudinal gradient (river slope) 

and annual mean air temperature. Biotic state was given by EQR values of four biotic quality 

elements (BQE): phytobenthos, macrophytes, macroinvertebrates and fish (Almeida et al., 

2014; Aguiar et al., 2014; Feio et al., 2014; Segurado et al., 2014).  

The structure of the BBN models was essentially based on outputs from both process-based 

models (SWAT - Soil and Water Assessment Tool), that simulated hydrological and nutrient 

stressors from baseline and future climate and socio-economic scenarios, and empirical 

models (GLMM - Generalized Linear Mixed Models) (see Ferreira et al., 2006 for further 

details on the use of SWAT and GLMM), that quantified relationships between hydrological 

and nutrient stressors with biotic indicators. Land use and natural environmental background 

(river slope and mean annual temperature) were also included as predictor variables in the 

empirical modelling. Because biomonitoring data from Sorraia was limited, and in order to 

encompass a wider environmental gradient, we also used data from the remaining Portuguese 

Tagus basin to run empirical models. The database comprised 240 sites from the Water 

Frame Directive biomonitoring program (Portuguese Environmental Agency, APA), with two 

sampling occasions (2010-11) (see Ferreira et al., 2016 for further details). The cause-effect 

links between stressors/land use/environmental background nodes and biotic indicator nodes 

were defined essentially according to the variables selected in GLMM (Segurado et al., 

submitted). The BBN was implemented using GeNIe v2.1 (freeware for academic use; 

available at https://download.bayesfusion.com/ ).  

 

https://download.bayesfusion.com/


 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

71 

 

 

Figure 30 Bayesian Belief Network model developed for the Sorraia Basin 

 

 Class boundaries 

The definition of class boundaries for pressures, stressors and background environmental 

variables was supported by partial response curves of biotic indicators derived from empirical 

models (Boosted Regression Trees – BRT). We considered three classes: low, intermediate 

and high. The low/intermediate boundary was located near the initial inflection of the curve 

and the Intermediate/high boundary was located near the final inflection of the curve. 

The class boundaries of biotic indicators were based on the quality boundaries of the biotic 

quality indices. We considered three classes: bad/poor, moderate and good/very good. The 

links between biotic indicators and biotic quality were deterministic, based on the “one out all 

out” rule, as followed by the Water Framework Directive (European Commission, 2000). 

 

 Conditional probability tables 

The construction of the conditional probability tables (CPT) linking stressors, land use and 

environmental background to biotic indicators were based on an expert judgement partially 

informed by the effect sizes and partial responses given by empirical models (GLMM). The 
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parameters were then learned with biomonitoring data from the year 2010. The conditional 

probability tables linking scenarios to stressors were based on outputs from SWAT (Soil and 

Water Assessment Tool) simulations.  

 

 Scenarios 

In the design of the BBN the scenarios were based on climate models, emission scenarios and 

storylines adopted in the MARS Project. To simplify the BBN structure we only considered 

one climatic model (GFDL) and one future projection (year 2060) (Table 17). We used the 

three storylines adopted in MARS - the Techno world (STRL 1), the Consensus world (STRL 

2) and the Fragmented world (STRL 3) – using a downscaling adapted to the environmental 

and socio-economic context of the Sorraia Basin (see Table 16 and further details in Ferreira 

et al., 2016). We also considered the implementation of three simple alternative measures 

within STRL 1: (1) removal of the two large dams (Measure 1); (2) optimization of irrigation 

and fertilization practices (Measure 2); both dam removal and optimization of irrigation and 

fertilization practices (Measure 3). We used SWAT (ArcSWAT 2012.10.19 interface for 

ArcGIS) to simulate daily values of the hydrological and nutrient variables for the six 

scenarios from 2055 to 2064. 

 

Table 17 Mean values for each scenario considered in the BBN design 

Variables/scenarios Baseline 

Techno 

world 

Consensus 

wold 

Fragmented 

world 

Measure 

1 

Measure 

2 

Measure 

3 

Mean annual temperature 15.58 17.15 16.78 17.15 17.15 17.15 17.15 

% Agriculture 32.75 39.30 26.20 39.30 39.30 39.30 39.30 

% Irrigated crops  1.60 2.07 1.28 2.07 2.07 2.07 2.07 

% Urban areas  0.67 0.73 0.70 0.73 0.73 0.73 0.73 

Duration of low flow events 13.72 62.58 63.21 46.79 62.29 62.48 62.20 

Number of low flow events 2.89 7.11 6.75 7.02 7.14 7.12 7.14 

Flow alteration 1.29 1.29 1.29 1.29 0.00 1.29 0.00 

Total Nitrogen 0.43 1.03 0.83 3.28 1.02 0.34 0.32 

 

 Validation 

To validate scenarios, we used the dataset of the year 2011 to construct new CPT for the 

Stressors/pressures nodes and predict class probabilities of the EQR for each BQE and the 
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final biotic quality. These predictions were then compared with real EQR classes and 

resulting biotic quality from the 2011 biomonitoring data. 

 

 Results and discussion 

Projections of biotic status under scenarios 

The projections under scenarios for the 2060 horizon performed with the BBN resulted in 

consistent trends - but with differing intensities - of the biotic state among each BQE (Figure 

31). Globally, the “fragmented world” (STRL 3) resulted in the highest increase of Bad/poor 

status. The status class probability distributions between “Techno world” (STRL 1) and 

“fragmented world” (STRL 3) resulted in very similar for phytobenthos and 

macroinvertebrates. This is because the status of these BQE were essentially affected by land 

use, which were considered to be the same in both storylines. This is a major caveat of the 

BBN designed for the Sorraia basin. According to empirical modelling we only found 

significant responses of phytobenthos and macroinvertebrates EQR to land use, which is in 

fact a proxy for many possible individual or interacting stressors. These BQE might have 

been affected by individual or interacting stressors that were not considered in our analyses. 

Because a single sampling occasion was available in each year, it is also possible that these 

BQE do not respond strongly to a coarse temporal resolution. Due to the stronger link of 

these two BQR to land use, mitigation measures implemented in the “techno world” (dam 

removal, optimization of fertilizer use and irrigation), which do not involve land use changes, 

had barely any effect on the probability distribution of phytobenthos and macroinvertebrates 

status classes.  

Macrophytes and fish showed more marked variations among scenarios, which is due to a 

stronger effect of nutrient and hydrological stressors. For macrophytes the bad/poor class 

probability varied roughly from 15% in the baseline to 38% in the “fragmented world” 

(STRL 3) and the good/very good class probability varied from 57% in the baseline to 37% in 

the “fragmented world”. For fish the bad/poor class probability varied roughly from 28% in 

the baseline to 58% in the “fragmented world” (STRL 3) and the good/very good class 

probability varied from 35% in the baseline to 19% in the “fragmented world” (STRL 3). 

Mitigation measures implemented in the “techno world” (STRL 1) showed to have different 

efficiencies in improving biotic status for different BQE’s. Dam removal did not show any 

noticeable effect on any BQE and global biotic status. An increased efficiency of irrigation 

and optimization in the use of fertilizers had a marked effect on macrophytes and fish, 

approaching the status class probability to the baseline situation. Hence, these results show 

that an extra effort on the programme of measures might be needed to attain the WFD targets 

in the future. 

The probability distribution of global biotic status projected under the different storylines 

showed similar trends to those shown for each BQE (Figure 32). The trends were more 

marked, which is due to the “one out all out” rule used to compute the global biotic status. 

The bad/poor class probability was 56% in the baseline and predicted to increase to 72% in 
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the “techno world” (STRL 1), 65% in the “consensus world” (STRL 2) and 80% in the 

“fragmented world” (STRL 3). The good/very goods class probability was 3,8% in the 

baseline and predicted to decrease to 1,8% in the “techno world” (STRL 1), 2,8% in the 

“consensus world” (STRL 2) and 1,1% in the “fragmented world” (STRL 3). Mitigation 

measures involving irrigation and fertilizer use optimization in the “techno world” (STRL 1)  

were proven to be effective to improve the global biotic status classes to levels near to those 

found in the baseline situation.  

 

Figure 31 Probability distributions of biotic status for each BQE, as predicted by the BBN under the considered 

scenarios for the 2060 horizon 

 

Figure 32 Probability distributions of global biotic status, as predicted by the BBN under the considered scenarios for 

the 2060 horizon 
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Figure 33 Probability distribution of biotic status classes estimated by the BBN using probability distributions of 

stressors derived from the 2011 biomonitoring data vs. observed biotic status classes in 2011 for each Biotic Quality 

Element 

 

Validation of BBN 

The probability distribution of biotic status classes estimated by the BBN using probability 

distributions of stressors derived from the 2011 biomonitoring data and the observed biotic 

status classes in 2011 are shown in Figure 33 for each BQE and Figure 34for the global biotic 

status. There are obvious discrepancies between probabilities derived from the BBN and the 

observed probabilities. Namely, the BBN predictions tend to underestimate the good/very 

good class probabilities consistently among BQE’s. Unfortunately, this validation has a 

strong limitation because not all sites in the database have complete data regarding EQR 

values for each BQE index. As a consequence, this validation is comparing BBN 

probabilities for the whole 2011 biomonitoring dataset with observed probabilities that 

represent only a subset of the data. 
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In the case of the global biotic status, the probability distribution derived from the 2011 

biomonitoring data tend to exaggerate the number of bad/poor sites (Figure 34) because, due 

to the “one out all out” rule, when there is a missing classification for one or more BQE the 

only way to classify a water body is as bad/poor, i.e., when it is classified as bad/poor 

according to at least one BQE. This is caused by missing data for some BQEs. Sites with 

missing data can only be classified in case there is a bad/poor classification for at least one 

BQE. Consequently, sites that did not have a bad/poor classification for at least one BQE 

could not be classified when there were missing data for at least one BQE.  

 

Figure 34 Probability distribution of global biotic status classes estimated by the BBN using probability distributions 

of stressors derived from the 2011 biomonitoring data vs. observed biotic status classes in 2011 

 

Obstacles, pro´s and con´s constructing and using the BBN 

Several obstacles were encountered during the implementation of the Bayesian Belief 

Network for the Sorraia Basin case study. First, the design of the BBN node structure and 

cause-effects links involved a lot of exploratory analyses and decision making that was not 

very straightforward and most often achieved by trial and error. The definition of probability 

conditional tables involves a big amount of effort, especially for nodes that have more than 

two parental nodes. Also, the process of variable discretization required much exploratory 

effort. A main caveat of BBN is that it is necessarily an over-simplification of reality. Not 

only because it is difficult to handle very complex cause-effect chains but also because of the 

necessity to perform a subjective discretization of variables into interval classes. In our case, 

data limitations did not allow us to validate in the most appropriate way the resulting BBN, 

because we had many missing data on EQR values for several BQE. Despite these obstacles 

and limitations there are clearly advantages of using BBN over other modelling approaches 

such as empirical modelling. A first advantage of BBN is that it can mix different sources of 

information, such as expert judgement, empirical modelling and process-based modelling into 
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a single framework. A second advantage is the simplicity of the final product allowing to 

easily visualize cause-effect links between ecological patterns. A third advantage is that it 

provides a mean to perform both prognostic analysis – e.g., to make outcome predictions 

under given management decisions or global change scenarios – and diagnostic analysis – 

e.g., to prioritize management targets to achieve given outcomes. A third and maybe the main 

advantage of BBN is that it allows to compute almost instantaneously several projections 

under alternative decisions in a very user-friendly environment. Therefore, BBN is 

potentially a very powerful tool for decision-making. 
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3 Synthesis 

 

3.1 Scenario studies 

In this report we have developed BBN models for five case studies catchments across Europe 

(Table 1) to explore the effects of future scenarios on biological responses and ecological 

status of water bodies. The case studies cover many dimensions of the MARS project: 

- The three European regions: North, Central and South 

- The two water categories: rivers and lakes 

- The three story lines: Techno, Fragmented and Consensus world 

- Various stressor types: Total P (MARS Benchmark Indicator BIn02), Total N (Bind03), 

hydrology (Bind04-06), hydromorphological alterations, temperature, etc. 

- Biological indicators: chlorophyll a (Bind09) in rivers and lakes, cyanobacteria in lakes 

(Bind10); macrophytes (BInd11), macroinvertebrates (Bind12-13) and fish (Bind15) 

- total ecological status of the water body (BInd01) 

 

Four of the case studies (Norway, Denmark, Finland and Portugal) build directly upon the 

process-based catchment models used in MARS WP4. The Dutch case study, where a 

process-based model was not available, relied on a different approach involving data and 

expert knowledge of stakeholders and scientists. All case studies have used the three MARS 

storylines, expect Finland which did not include Techno world. However, since Techno and 

Fragmented world are based on the same climate scenario (RCP 8.5), both climate scenarios 

are represented in all case studies. Future climate data were simulated by two different 

climate models, GLFD and ISPL, for both climate scenarios. For each case study, the climate 

model most suitable for the given region was selected (IPSL for Norway, Denmark and 

Netherlands; GLFD for Finland and Portugal). For all case studies, results are shown for the 

time horizon 2060 (i.e. 2050-2070), except for Finland showing results for the time horizon 

2030 (i.e. 2020-2040) and for Denmark, which shows both time horizon periods.  

 

In this synthesis, we highlight how the BBN methodology was used to link biological 

elements and ecological status to stressors and other indicators.  Because of the many 

differences among the case studies - both inherently and in the implementation of the MARS 

scenarios, we focus on the main commonalities. We assess the added value of this modelling 

effort compared to the starting point for each case, i.e. the process-based catchment 

modelling from MARS WP4.  

 

The linking of biological variables to physico-chemical variables in the BBN models was 

built upon the extensive empirical data analysis in WP4, which involved first the design of 

conceptual models and then the quantification of relationships between biological response 
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variables and various stressors. The CPTs for biological variables were mostly based directly 

on observations; i.e. the count of observations of a response variable in its different states co-

occurring with the stressor variables in their different states. In many cases the count of 

observations was not sufficient to fill in a CPT, especially if there was more than one parent 

node (stressor). The count-based method was then supplemented with other methods, such as 

statistical modelling (e.g. cyanobacteria in Norway), or expert judgement (e.g. macrophytes 

in the Netherlands).  

 

For all case studies, the BBN method enabled the coupling of abiotic and biotic models, and 

facilitated predictions of biological responses under the different future storylines. Therefore, 

BBNs had a clear additional value compared to the abiotic process-based catchment models 

(MARS work package 4). Below, the main results are presented for the case studies. 

 

- Norway: The process-based models (INCA-P and MyLake) predicted temperature, TP 

and Chl-a in the lake, while the BBN added predictions on cyanobacteria and their 

response to increased temperature, and included this in the assessment of ecological 

status. The cyanobacteria node resulted in a stricter assessment of ecological status than 

the chl-a node alone. Due to the cyanobacteria node, this BBN also indicated a slight 

negative effect of increased temperature in the Techno and Fragmented world scenarios 

on ecological status, although the effects of land-use changes and nutrients were 

dominating. 

- Finland: The process-based model (INCA-P) predicted TP and Chl-a in the river for one 

catchments (Lepsämänjok), while the BBN added predictions on EQR (ecological quality 

ratio, based on macrophytes, macroinvertebrates and fish) and total ecological status. The 

ecological status node gave stricter assessments than chl-a alone. As for Norway, 

increased temperature had a negative impact ecological status, but the effects of land use 

were stronger.  

- Denmark: The process-based model (SWAT) predicted flow and nutrients (TP, TN) in the 

river, while the BBN added three biological quality elements: macrophytes, 

macroinvertebrates and fish. Some of the predicted changes in ecological status by the 

BBN contrasted the initial expectations. For example, the probability of High-Good status 

of macrophytes was higher for Techno and Fragmented world than for Consensus world, 

although the latter storyline is more sustainable. A plausible explanation is that the 

differences in ecological status were driven by the hydrological parameters, which depend 

mostly on climate change rather than land-use. The total ecological status showed less 

response to scenarios than the individual BQEs, because the combination of the different 

responses made all probability distributions more uniform.  

- Portugal: The process-based models (SWAT) predicted hydrological and nutrient 

variables in the river, while the BBN added four BQEs (phytobenthos, macrophytes, 

macroinvertebrates and fish) and total ecological status. The BBN predicted that different 
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BQEs respond differently to scenarios and to mitigation options. Phytobenthos and 

macroinvertebrates responded most strongly to land use. Hence, other mitigation 

measures implemented in Techno world (e.g. dam removal) had no effect in the BBN. 

Macrophytes and fish, in contrast, responded to both nutrients and hydrological stressors, 

and therefore also to scenarios of measures such as a more efficient irrigation and an 

optimization of fertilizers. In this case, the total ecological status showed a more marked 

response than the individual BQEs, because the one-out-all-out (OOAO) rule resulted in 

stricter assessment. This result illustrates an inherent problem of the OOAO, rather than 

the BBN method: a higher number of BQEs tends to result in a stricter assessment, and 

uncertainty in the assessments of individual BQEs tend to increase the risk of 

underestimating the total ecological status (Moe et al. 2016).  

- The Netherlands: This case study was not based directly on the process-based model of 

work package 4.2, because it was difficult to retrieve reliable statistical relationships.  

Instead, it demonstrates how stakeholder engagement and expert judgement can be 

utilized to develop a BBN, and even run it for future scenarios. We found that presenting 

a BBN in a group of stakeholders helped them in constructively discussing their water 

systems. The BBN helped the waterboard in discussion among colleagues, to obtain 

common understanding, and with communication towards the public. 

The BBN showed that the impact of human alterations in the streams caused a larger 

impact on the macrophyte abundance than climate change. In fact, in the current defined 

scenarios the impact of the dams nullified the impact of climate change. Only changes in 

riparian zone maintenance would sort an effect.  

 

A common strength of these five BBN models was the large amount of data available, both 

observed and simulated by the process-based catchment models. The statistical modelling of 

relationships between biological and physico-chemical variables, which had been carried out 

by WP4, also facilitated the development of the BBNs by providing causal and quantified 

relationships. This background provided a unique opportunity to link future climate and land-

use scenarios through the whole DPSIR chain from changes in drivers to ecological status 

until the time horizon 2060. However, building the BBN models directly on these conceptual 

models also constrained the selection of variables to those predicted by the process-based 

models, and constrained the causal relationships to those identified as significant by the 

statistical modelling. For example, the BBN for Norway did not contain TN or water colour 

(humic content), since these variables are not predicted by the lake model (MyLake), 

although they may affect cyanobacteria. In the BBN for Portugal, the responses of 

phytobenthos and macroinvertebrates were dominated by the strong effect of land use 

estimated by WP4, and therefore showed no response to other types of mitigation measures. 

Therefore, when interpreting the outcome of future scenarios in the different case studies, it is 

important to be aware of such constraints on the BBN development. Nevertheless, one result 

was common across the whole set of case studies: the inclusion of one or more biological 



 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

81 

 

components by BBN modelling resulted in stricter assessment of ecological status, compared 

to the process-based models alone. This outcome demonstrates the importance of applying 

modelling methods such as BBN to supplement more traditional models.  

 

3.2 Assessment of the BBN modelling approach 

The approach of constructing BBNs for forecasting the effects of scenarios enabled us to 

combine information from different sources (models, data, expert opinion) into one 

methodology. This is a clear advantage over other approaches, e.g. a statistical modelling 

approach, where variables cannot be included if no data are available. Overall, the case 

studies indicate that BBNs can be a successful approach, considering that suitable 

information can be retrieved from different sources. Below, the pros and cons of the use of 

BBNs are treated in more detail.   

 

Advantages 

One of the most obvious advantages of BBN is that it can integrate different sources of 

information, such as expert judgement, empirical modelling and process-based modelling into 

a single framework. This makes BBN an useful tool in cases when the quantity or quality of 

measured data do not allow specific statistical analysis. 

Another advantage of the BBN is the simplicity. Once the BBN has been created, the 

procedure to make predictions based on scenarios is simpler and faster than corresponding for 

process-based models, allowing the user to have a quick overview of the scenario impacts on 

both the stressor values and the ecological status nodes at the same time. Consequently, the 

inputs and outputs of the BBN model may be relatively easy to understand for end-users 

without any modelling background. This simplicity makes the BBN very suitable as a 

decision support tool by water managers or other stakeholders without expertise in eco-

hydrological modelling. For our case studies, the BBNs enabled us to compute 

instantaneously projections under alternative decisions in a user-friendly environment. BBN 

is therefore a potential powerful tool for decision-making. 

Furthermore, the BBN approach provides an opportunity to include biological elements, as 

demonstrated by our studies, which is not the case in many existing process-based models for 

ecological status of rivers and lakes. Even when data are sparse, theory or expert knowledge 

on selected biological indicators can be used as a first step to construct causal links (CPTs) 

between abiotic and biotic responses. Since the Water Framework Directive (WFD) requires 

that assessments are based primarily on biology (EC, 2000), this is clearly an added value for 

use of models in water management in Europe.  

Moreover, the WFD requires that potential impacts of climate change are considered in the 

next set of river basin management plans. Although much knowledge is available on effects 
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on climate change on ecosystems, including specific effects on biological quality elements in 

lakes (Moe et al., 2016), incorporating such information in predictive models is a challenge. 

The BBN methodology can facilitate the use of such knowledge, manifested as expert 

judgement of probabilities under given climatic scenarios.  

Overall, it can be concluded that BBN is a promising approach to develop tools for 

supporting informed decision making and thus to facilitate the work of water managers. 

 

Disadvantages 

There are several limitations associated with the BBN methodology in the context of 

environmental management. Challenges that are associated with the use of BNs have also 

been discussed previously by Landuyt et al. (2013), Uusitalo (2007) and Varis and Kuikka 

(1999). 

A drawback of the high simplicity of BBNs is the necessity to constrain the information in 

the BBN. In order to have a simple, visual model, which may facilitate its use, the number of 

stressors has to be limited, which may diminish the credibility of the results. In addition, the 

design of the BBN structure and cause-effects links involves many exploratory analyses, and 

decision making may not be straightforward and often achieved by trial and error. 

Furthermore, the necessity of defining subjective discretization of variables into interval 

classes is sometimes problematic.  

The fact that the network cannot contain loops puts constraints on the ecological processes 

that can be modelled; phosphorus and phytoplankton dynamics in lakes are typically 

dominated by feedback processes (Saloranta and Andersen, 2007). For example, in the Lake 

Vansjø case study, high phytoplankton biomass can reduce the Secchi depth; on the other 

hand, lower Secchi depth can limit further phytoplankton growth due to light limitation. In 

the BBNs, such feedback loops were handled by dynamic process-based models, while the 

BBN summarised the outcome of these processes. In addition, the accumulation of 

uncertainty with the length of the network implies that it can be difficult to draw conclusions 

from the final output nodes (Marcot et al., 2006).  

The definition of probability conditional tables involves a big amount of effort, especially for 

nodes that have more than 2 parental nodes. Also, the process of variable discretization 

required much exploratory effort. Besides, data availability might be not enough to create 

CPTs for all the desired nodes and combinations, which forces the user to simplify the 

network. 
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3.3 Validation 

Developed BBNs should be validated to assess the ability of the model in representing the 

ecosystem. According to a review of McDonald et al. (2015), only 61%  freshwater and 

estuarine BBNs published between 2002-2014 were validated. The procedure for validation 

of models strongly depends on the purpose of the model, and – hence - model validation is 

highly case-specific and it is difficult to generalise statements. Based on our case studies, the 

following criteria have been identified, viz.  

1. the BBNs should capture the most important causal relationships of the 

ecosystem modelled,  

2. the quantification of each of these relationships should be validated separately,  

3. the results of the BBNs should be able to fit observed data fairly well.  

 

Inclusion of most important causal relationships 

The inclusion of the most important causal relationships can be checked by carefully 

reviewing these relationships and the assumptions made in the model formulation and 

comparing them to the most up-to-date knowledge as possible. This is probably the most 

important step in the construction of BBNs, and can be done by peer review by experts or 

managers before adoption of the BBN into management decision-making frameworks 

(McDonald et al., 2015). However, it may be not possible to achieve this in any quantitative 

terms. Another approach is to play with the model and check if it matches with available 

expert knowledge of the ecosystem under study or with behaviour of similar ecosystems.  

 

Quantification of causal relationships 

The relationships in the BBN can also be validated separately. This may be especially 

relevant when few data are available. An example of this approach is the BBN of Lake 

Vansjø. Because there was a limited number of cyanobacteria observations, an independent 

dataset ("EUREGI") was used to construct an alternative CPT for cyanobacteria and 

compared the outcome of this version with that the original version. The EUREGI dataset 

gave similar probability distributions in the CPT for cyanobacteria to those from Lake 

Vansjø, which strengthened the confidence in these probability distributions (Chapter 2.1).  

 

Another approach to deal with few data is to fix probabilities in the CPTs, and to check if the 

model behaves according to expert knowledge. In  the BBN of Lake Vansjø the relationship 

between temperature, Chl-a and cyanobacteria was examined more closely by setting 

evidence (fixating probabilities) for the nodes temperature and Chl-a. The results showed that 

the model behaved as expected regarding seasonal variation in temperature and 

cyanobacteria, and that the BBN generated reasonable predictions (Moe et al. 2016). 
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Fit between actual observations and modelled results 

The results of the BBN-model should be able to fit observed data fairly well. This can be 

quantified in different ways, based on the comparison of model predictions and actual 

observations. Depending on the type of data, residuals, misclassification rates or something 

similar can be calculated to evaluate how well the BBN matches independent datasets of field 

observations. Many metrics are available to denote model prediction or classification 

accuracy and error rates (Marcot, 2012). From these, the metric that best fits the purpose of 

the model can be selected.  

 

When data are unavailable or cannot be gathered, it may be possible to query other experts 

and compile a case file of the experience and known or predicted outcomes, and use that to 

validate the model. However, such results would then be more appropriately interpreted as 

verification of the model against outcomes provided by a set of independent experts’ 

knowledge (Marcot, 2017).  

 

For our case studies, the outcome of the BBNs of the Odense Fjord (Denmark) and Soraia 

(Portugal) performed reasonable to good when compared to field observations (if data 

available). For Finland and The Netherlands, the validation was problematic due to a shortage 

of field data.  

 

3.4 Differences between BBNs for diagnostic and prognostic purposes 

In task 7.2 of MARS, BBNs have been used for diagnostic purposes (Feld et al., 2017), while 

in this report (task 7.3) the focus is on prognosis. This led to the question whether different 

adaptations in the BBN design are required when its main purpose is to perform diagnostic 

versus prognostic analyses.  

In general, the final structure of the BBN should be determined by the purpose of the model. 

Unclear modelling objectives typically results in constantly changing or expanding models, 

resulting in poorly-designed models with low to no scientific credibility. Therefore, Marcot 

(2017) strongly advocates to choose just one purpose for BBN, viz. in this case either 

diagnosis or prognosis.  

In principle, a BBN could be applied for both diagnostic and prognostic purposes. For 

example, the BBN for Denmark was used in both in a diagnostic and prognostic way, to 

calculate the posterior probabilities of each MARS storyline after setting evidence for a 

certain ecological status in each time horizon and for each index (Figure 21). However, a 

BBN needs to be simplified to become useful for the purpose it is designed for. When the 

focus is on diagnosis, the choices for this simplification may be made in a different way than 

when the model has a prognostic purpose. Accordingly, the design of the final BBN model  

may differ substantially between BBNs for either diagnostic or prognostic purposes.  



 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

85 

 

Another caveat on the use of prognostic BBNs is the fact that CPTs are often filled with data 

or expert knowledge from sites ranging from ‘bad’ to ‘(very) good’ ecological quality. 

Accordingly, by using BBNs that are filled with these data, it is assumed that species 

composition will respond ‘directly’ to improved (abiotic) conditions. In many ecological 

rehabilitation projects however, it is shown that ecological recovery can be strongly delayed 

(years to decades), because many species need to recolonize the rehabilitated areas, even 

when abiotic conditions are optimal for these ‘target’ species. This recolonisation process 

strongly depends on the distance to source population of these species, as well as their 

dispersal characteristics. Hence, the use of datasets differing in ecological quality gives an 

indication of the potential increase in ecological quality, rather than the realized ecological 

quality on the short term. If the purpose of the BBN is to forecast the realized ecological 

recovery, then datasets should be used which incorporate sites before and after ecological 

rehabilitation.  
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Appendix 1: BBN versions of case study Odense (Denmark) 

Figure A1.1. BBN Version 1: Isolated land use change scenarios with observed climate (2001-2010). The BBN shows the conditional probability for each 
node level considering equal probabilities in scenarios. 
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Figure A1.2. BBN Version 2: Baseline scenarios for the MARS Storylines with modelled climate (2011-2020). The BBN shows the conditional probability for 
each node level considering equal probabilities in scenarios. 
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Figure A1.3. BBN Version 3: MARS Storylines combined scenarios. The BBN shows the conditional probability for each node level considering equal 
probabilities in scenarios. 
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Appendix 2: Conditional probability tables (CPTs) of case study 

Odense (Denmark) 

Table A2.1. Conditional probabilities between isolated land use change scenarios and baseline 

scenarios and stressors. 

 

PLU HT AN MD PLU_4.5 PLU_8.5 

 

BFI BFI 

Low 0.032258 0 0 0.032258 0.032258 0.064516 

Med 0.258065 0.129032 0.096774 0.322581 0.193548 0.258065 

High 0.709677 0.870968 0.903226 0.645161 0.774194 0.677419 

 

Q90 Q90 

Low 0.967742 0.935484 1 0.967742 0.967742 0.903226 

Med 0.032258 0.064516 0 0.032258 0.032258 0.096774 

High 0 0 0 0 0 0 

 

FRE25 FRE25 

Low 0.870968 0.903226 0.967742 0.870968 0.967742 1 

Med 0.129032 0.096774 0.032258 0.129032 0.032258 0 

High 0 0 0 0 0 0 

 

DUR3 DUR3 

Low 0 0.032258 0 0.032258 0.16129 0.193548 

Med 0.129032 0.193548 0.129032 0.129032 0.193548 0 

High 0.870968 0.774194 0.870968 0.83871 0.645161 0.806452 

 

TP TP 

Low 0.677419 0.645161 0.677419 0.677419 0.709677 0.83871 

Med 0.258065 0.322581 0.258065 0.258065 0.193548 0.064516 

High 0.064516 0.032258 0.064516 0.064516 0.096774 0.096774 

 

TN TN 

Low 0.064516 0.096774 0.225806 0 0.064516 0.064516 

Med 0.096774 0.774194 0.709677 0 0.064516 0.064516 

High 0.83871 0.129032 0.064516 1 0.870968 0.870968 
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Table A2.2. Conditional probabilities between MARS storylines (combined land use and climate 
changes scenarios) and stressors. 

 
HT AN MD 

Time Horizon 2030 2060 2030 2060 2030 2060 

 
BFI 

Low 0 0 0 0 0 0 

Med 0.096774 0.032258 0.096774 0.064516 0.193548 0.096774 

High 0.903226 0.967742 0.903226 0.935484 0.806452 0.903226 

 
Q90 

Low 1 1 0.967742 0.967742 0.935484 0.967742 

Med 0 0 0.032258 0.032258 0.064516 0.032258 

High 0 0 0 0 0 0 

 
FRE25 

Low 1 1 1 1 1 0.967742 

Med 0 0 0 0 0 0.032258 

High 0 0 0 0 0 0 

 
DUR3 

Low 0.193548 0.354839 0.193548 0 0.193548 0.258065 

Med 0.064516 0.193548 0.064516 0.032258 0.032258 0.193548 

High 0.741935 0.451613 0.741935 0.967742 0.774194 0.548387 

 
TP 

Low 0.741935 0.709677 0.677419 0.709677 0.741935 0.709677 

Med 0.193548 0.258065 0.193548 0.225806 0.129032 0.225806 

High 0.064516 0.032258 0.129032 0.064516 0.129032 0.064516 

 
TN 

Low 0.096774 0.096774 0.193548 0.290323 0 0 

Med 0.483871 0.83871 0.580645 0.580645 0 0.096774 

High 0.419355 0.064516 0.225806 0.129032 1 0.903226 

 

  



 D7.2-2 – Bayesian Belief Networks:  

Linking abiotic and biotic data 

 

98 

 

Table A2.3. Conditional probabilities between stressors and indicators. The same CPT is used in the 
three versions of the BBN. 

 DFFV 

BFI Low Med High 

FRE25 Low Med High Low Med High Low Med High 

EQR Low 0.5000 0.2000 0.5000 0.0000 0.3333 0.1667 0.2000 0.0000 0.1429 

EQR Med 0.5000 0.6000 0.1667 1.0000 0.1667 0.1667 0.5000 0.2000 0.0000 

EQR High 0.0000 0.2000 0.3333 0.0000 0.5000 0.6667 0.3000 0.8000 0.8571 

 
DVPI 

Dur3 Low Med High 

Q90 Low Med High Low Med High Low Med High 

EQR Low 0.1667 0.1667 0.0435 0.3333 0.2727 0.3333 0.5882 0.0000 0.0000 

EQR Med 0.1667 0.1667 0.3913 0.3333 0.3182 0.3333 0.2353 1.0000 1.0000 

EQR High 0.6667 0.6667 0.5652 0.3333 0.4091 0.3333 0.1765 0.0000 0.0000 

 
DVFI 

Q90 Low Med High 

TP Low Med High Low Med High Low Med High 

EQR Low 0.1429 0.0667 0.0909 0.3750 0.1538 0.2143 0.0000 0.0833 0.0000 

EQR Med 0.4286 0.4667 0.5455 0.1250 0.2308 0.6429 0.0588 0.0833 0.0000 

EQR High 0.4286 0.4667 0.3636 0.5000 0.6154 0.1429 0.9412 0.8333 1.0000 

 
ASPT 

Q90 Low Med High 

TP Low Med High Low Med High Low Med High 

EQR Low 0.5714 0.6111 0.9286 0.5000 0.6923 0.7333 0.0588 0.1667 0.0000 

EQR Med 0.2857 0.3333 0.0714 0.3750 0.2308 0.2667 0.4706 0.6667 0.6667 

EQR High 0.1429 0.0556 0.0000 0.1250 0.0769 0.0000 0.4706 0.1667 0.3333 

 

Table A2.4. Conditional probabilities between EQR levels for the biological indices and ecological 
status classes. The same table is applied for every index. 

 Biological Index 

 
EQR Low EQR Med EQR High 

PB 1 0 0 

M 0 1 0 

HG 0 0 1 
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Table A2.5. Conditional probability table to determine the joint ecological status from the three Danish biological indices. 

Status Fish PB M HG 

Status Macrophytes PB M HG PB M HG PB M HG 

Status Macroinvert. PB M HG PB M HG PB M HG PB M HG PB M HG PB M HG PB M HG PB M HG PB M HG 

PB 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 

M 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 

HG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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Appendix 3: Stressors probability distributions of case study Odense 

(Denmark) 

 

Figure A3.1. Probability distributions (%) for stressors for the isolated land use change scenarios. 
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Figure A3.2. Probability distributions (%) for stressors for baseline (PLU_4.5, PLU_8.5) and MARS 
storylines scenarios. 
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Appendix 4: Results of scenarios of case study Regge and Dinkel 

(The Netherlands) 

Figure A.4.1. Results of different scenarios for maintenance of submerged vegetation 

Abbreviations: FH: Discharge high, FL: Discharge low, PL: Depth profile surface area large, PS: 

Depth profile surface area small, DN: no dams present, DY: dams present, RL: maintenance in 

the riparian zone low, RH: maintenance in the riparian zone high, SH: maintenance in the 

submerged zone high, SL: maintenance in the submerged zone low.  
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Figure A.4.2. Results of different scenarios for river discharge 

Abbreviations: FH: Discharge high, FL: Discharge low, PL: Depth profile surface area large, PS: 

Depth profile surface area small, DN: no dams present, DY: dams present, RL: maintenance in 

the riparian zone low, RH: maintenance in the riparian zone high, SH: maintenance in the 

submerged zone high, SL: maintenance in the submerged zone low.  
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Figure A.4.3. Results of different scenarios for maintenance of riparian vegetation 

Abbreviations: FH: Discharge high, FL: Discharge low, PL: Depth profile surface area large, PS: 

Depth profile surface area small, DN: no dams present, DY: dams present, RL: maintenance in 

the riparian zone low, RH: maintenance in the riparian zone high, SH: maintenance in the 

submerged zone high, SL: maintenance in the submerged zone low.  
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Figure A.4.4. Results of different scenarios for depth profile 

Abbreviations: FH: Discharge high, FL: Discharge low, PL: Depth profile surface area large, PS: 

Depth profile surface area small, DN: no dams present, DY: dams present, RL: maintenance in 

the riparian zone low, RH: maintenance in the riparian zone high, SH: maintenance in the 

submerged zone high, SL: maintenance in the submerged zone low.  

 

 

 

 



 Deliverable D7.3 – Bayesian Belief Networks: Linking abiotic 

and biotic data - Final Report  
 

 

 

 

Page 106/106 

Figure A.4.5. Results of different scenarios for presence of dams 

Abbreviations: FH: Discharge high, FL: Discharge low, PL: Depth profile surface area large, PS: 

Depth profile surface area small, DN: no dams present, DY: dams present, RL: maintenance in 

the riparian zone low, RH: maintenance in the riparian zone high, SH: maintenance in the 

submerged zone high, SL: maintenance in the submerged zone low.  
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